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9.1  Overview
Constraints are used to influence the FPGA design implementation tools including the 
synthesizer, and place-and-route tools. They allow the design team to specify the design 
performance requirements and guide the tools toward meeting those requirements. The 
implementation tools prioritize their actions based on the optimization levels of synthesis, 
specified timing, assignment of pins, and grouping of logic provided to the tools by the design 
team. The four primary types of constraints include synthesis, I/O, timing and area/location 
constraints.

Synthesis constraints influence the details of how the synthesis of HDL code to RTL 
occurs. There are a range of synthesis constraints and their context, format and use typically 
vary between different tools. 

I/O constraints (also commonly referred to as pin assignment), are used to assign a signal 
to a specific I/O (pin) or I/O bank. I/O constraints may also be used to specify the user-con-
figurable I/O characteristics for individual I/Os and I/O banks. 

Timing constraints are used to specify the timing characteristics of the design. Timing 
constraints may affect all internal timing interconnections, delays through logic and LUTs 
and between flip-flops or registers. Timing constraints can be either global or path-specific. 

Area constraints are used to map specific circuitry to a range of resources within the 
FPGA. Location constraints specify the location either relative to another design element or 
to a specific fixed resource within the FPGA. 

9.2  Design Constraint Management
One of the most important constraint implementation issues is the wide range of potential 
configuration overlap and interference. Effective design constraint implementation requires 
a solid knowledge and understanding of both the system requirements and the current 
design implementation approach. Even with solid knowledge of the design, there are a broad 
range of design constraint combinations that can be applied to the design. Complex inter-
relationships can and do occur between the different constraint types. This inter-relationship 
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may cause a change in one requirement group to require changes in other design constraints 
as well, even when the changes may be relatively minor. This complex interaction leads to 
some challenges in implementing and managing design constraints. 

It can be beneficial to develop a design constraint plan in the early stages of a project. 
An organized plan can help keep the design from becoming over constrained. The design 
constraint plan may be as simple as an outline with bulleted entries. The constraint plan 
should be viewed as an informal document with an open format that supports efficient up-
dates as the project matures.

Working to achieve timing closure is a challenging constraint task. The process of 
achieving timing closure can be improved by following an organized design optimization 
flow. The second part of this chapter presents a generalized design optimization flow and ad-
dresses important topics within each process stage. The selected design optimization flow and 
other text should be incorporated into the design constraint plan.

9.2.1  Avoiding Design Over-Constraint 
Effective design constraint requires design analysis and restraint to develop and main-
tain the correct constraint balance. Over-constraining a design will cause the tools to work 
harder to resolve conflicting or unreasonable requirements with limited resources. Design 
over-constraint can occur in several different ways. Some of the most common include 
simply assigning too many constraints, constraining noncritical portions of the design, and 
setting constraints beyond the required level of performance. An example of design over-
constraint may occur when path-specific timing constraints have been set to a minimum 
path delay value far exceeding the required circuit performance. The principle “if a little is 
good then more must be better.” is seldom an appropriate philosophy when constraining an 
FPGA design. 

Over-constraining a design can result in a significant increase in the time required to 
place, route and analyze a design. The result is a longer design implementation time. Since 
the design implementation phase potentially occurs many times during a design cycle this 
can have a significant impact on design efficiency. A more serious design over-constraint 
consequence occurs when the place-and-route process can no longer successfully implement 
the design within the specified FPGA architecture. This may force an upgrade to a larger or 
faster speed-grade FPGA component if the over-constraint conditions are not adjusted.

To avoid design over-constraint a few simple guidelines should be followed. Start by 
constraining only the highest performance circuits and then add additional constraints as 
required in an iterative approach. Additionally try to leave significant margin within area 
constraints and avoid constraining lower performance circuits unnecessarily. A more detailed 
design optimization flow will be presented later in this chapter.

9.2.2  Synthesis Constraints 
The types, syntax and context of synthesis constraints generally vary between tools. Table 
9.1 lists some of the synthesis constraints the Xilinx Synthesis Tool (XST). 
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Table 9.1 XST synthesis constraints

BOX_TYPE LOC REGISTER_POWERUP

BUFFER_TYPE LUT_MAP RESOURCE_SHARING

BUFG (CPLD) MAP RESYNTHESIZE

BUFGCE MAX_FANOUT RLOC

CLK_FEEDBACK MOVE_FIRST_STAGE ROM_EXTRACT

CLOCK_BUFFER MOVE_LAST_STAGE ROM_STYLE

CLOCK_SIGNAL MULT_STYLE SHIFT_EXTRACT

DECODER_EXTRACT MUX_EXTRACT SHREG_EXTRACT

ENUM_ENCODING MUX_STYLE SLEW

FSM_ENCODING OPT_LEVEL SLICE_PACKING

FSM_EXTRACT OPT_MODE SLICE_UTILIZATION_RATIO

FULL_CASE PARALLEL_CASE TIG

INCREMENTAL_
SYNTHESIS

PERIOD TRANSLATE_OFF

IOB PRIORITY_EXTRACT TRANSLATE_ON

IOSTANDARD RAM_EXTRACT USELOWSKEWLINES

KEEP RAM_STYLE XOR_COLLAPSE

KEEP_HIERARCHY REGISTER_BALANCING SLICE_UTILIZATION_RATIO_
MAXMARGIN

EQUIVALENT_REGISTER_
REMOVAL

REGISTER_DUPLICATION

Synthesis constraints are used to direct the synthesis tool to perform specific opera-
tions. As an example, consider the synthesis constraint CLOCK_BUFFER. This constraint 
is used to specify the type of clock buffer used on the clock port. Two important synthesis 
constraints that can be used to optimize a design implementation are REGISTER_BAL-
ANCING and INCREMENTAL_SYNTHESIS. 

Register balancing is used to optimize performance, and incremental synthesis is used 
to reduce synthesis runtime. Register balancing is used to meet design timing requirements 
by moving the placement of Boolean logic functionality across register boundaries. Regis-
ter balancing can increase circuit clock frequency. This improved performance is gained by 
adjusting the relative path delays. There are two categories of register balancing and they are 
referred to as forward and backward balancing. Forward register balancing seeks to move a set 
of registers located at a LUT’s input to a single register at the LUT’s output. Backward regis-
ter balancing is based on the opposite principle. The synthesis tool works to move a register 
located at a LUT’s output to a set of flip-flops at the LUT’s input. At the end of the process, 
the total number of registers in the design may be increased or decreased.

The primary objective of incremental synthesis is to reduce the total time it takes to 
compile the design. This is performed by synthesizing only the portion of the design that 
has changed. Synthesis tools may have different switches or constraints within the synthesis 
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phase to support this approach. Two other factors that can significantly influence the syn-
thesis phase include preservation of the implemented design hierarchy, and the proper use of 
design constraints.

9.2.3  Pin Constraints 
The first question that comes to mind when considering pin assignment is, “Why not let the 
FPGA tools assign pins?” This is a common question for designers to ask, since the FPGA 
tools are trusted to place and route the design. However, there are several factors that influ-
ence software-controlled resource location assignment. One of the primary FPGA placement 
directives is to spread functionality out to avoid routing congestion. With no clear guidance 
to the contrary, the tools will typically work to spread functionality out across the available 
resources. As an example, FPGA tools can have difficulty identifying the pins that make up 
a signal bus and can also have difficulty identifying the control signals associated with the 
bus. Without knowledge that the signals form a group, the tools do not seek to co-locate the 
signals even though they may benefit from closer placement. While it may be possible to 
increase the global constraints of the design so that the bus signals and related control signals 
will be located as a group, the design team then runs the risk of over-constraining the design. 
This can significantly increase the place-and-route time for the FPGA software. 

Ultimately, the design team knows more about the desired data flow through the design 
than the tools. The design team should be in a better position to guide and influence the de-
sign implementation through informed pin assignments. A design team using a rapid design 
development flow may need to begin I/O assignments very early in the design cycle. The 
process of I/O assignment is more involved than simply assigning signals to available pack-
age pins. The following paragraphs will present some of the considerations that affect the pin 
assignment decisions. 

Assigning board-level signals to FPGA I/O can have a large impact on system perfor-
mance. In an ideal world, the critical FPGA functionality would have already been captured, 
compiled and simulated multiple times before the pin assignment step, allowing the design 
team to determine an optimized pin assignment. However, in a typical rapid system de-
velopment, device pins are assigned early in the design cycle. The early assignment may 
be necessary to support early PCB layout. It is possible for the PCB board to have already 
been routed and in the process of being built before a significant percentage of the FPGA 
functional design has been captured. This “pin-locking” may be required to meet aggressive 
design schedules and allow the FPGA development to occur in parallel with the board build 
effort. This has the effect of maximizing schedule progress, while also increasing risk. 

It is important to note that pin assignment is not critical for all designs, or all the pins 
in a design. Designs with significant I/O margins or slow operational speeds may not require 
careful pin assignment. However, pin assignment may become a critical factor if the design 
margin is limited by any of the following FPGA design factors: 

■ 	 I/O pin availability 

■ 	 FPGA fabric-level logic resources 
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■ 	 On-chip routing resources 

■ 	 Required logic speed versus maximum FPGA speed 

■ 	 Required logic speed versus layers of logic required to implement the design 

Pin assignment can also become critical at the board level when signals require special 
routing considerations such as short signal trace length, matched line length, or controlled 
impedance. These requirements might be a result of signal loading or speed requirements or 
EMI requirements. 

Most designs fall into a crossover group where pin assignment is not quite critical but also 
not an insignificant factor in design performance. Almost any design can benefit from a well-
implemented pin assignment. It is possible to affect and improve design performance through 
considered pin assignment. The design factors that may influence pin assignment include:

■ 	 The size of the device 

■ 	 The device package required 

■ 	 The speed grade of the device 

■ 	 The maximum speed that the FPGA can run 

■ 	 The amount of time required to run place-and-route routines 

■ 	 The number of layers in the PCB 

■ 	 The number of vias required to implement signal crossovers in the PCB 

■ 	 The trace width and spacing of the PCB 

■ 	 The placement and orientation of components on the PCB 

■ 	 The difficulty and time required to route the PCB 

Pin assignment is often not given the time or attention required to implement an opti-
mized design. A few important pin assignment concepts follow.

The pin assignment process is iterative, and pin assignments are often assigned mul-
tiple times during the life of a project as design changes and updates occur. 

Effective pin assignment requires detailed system-level design knowledge, including: 

■ 	 Board-level component relationships and interface details 

■ 	 Targeted FPGA architecture details and proposed FPGA-level design 
implementation 

Pin assignment can be challenging because the designer must be knowledgeable about 
many aspects of the design. Pin assignment is affected by factors at both the board level and 
at the device fabric level. Assignments should be made based on a strong systems-oriented 
understanding of the data flow of the design at all levels. Effective pin assignment requires a 
detailed knowledge of the signal interfaces into and out of the FPGA at the board level, as 
well as an understanding of the proposed functional groups and interfaces within the FPGA. 
Assignments may also be affected by the details of the FPGA family’s architecture and I/O 
structure and the I/O bank configuration set up by the design team.
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Since FPGA components come in discrete sizes, FPGA designs may have “extra” I/O 
pins, which are not required to bring in or out system-critical signals. Rather than simply 
leaving these pins unused, every effort should be made to utilize each of these pins wisely. 
I/O Pins that are “spare” after the required signals have been assigned should be evalu-
ated for potential use as test points, auxiliary I/O or user-defined grounds. Consider the 
functionality of the board from a system viewpoint. What functionality might be added in 
the future? What signals will be required to implement future functions? Could board-level 
errors be fixed internal to the FPGA if the correct signals were accessible? Could additional 
status or control functionality be provided by routing specific signals into the FPGA? What 
are these additional signals?

Another critical use for unused pins is provision for access into internal nodes within the 
FPGA for testing and debugging. Routing a number of test points out to headers or a connec-
tor for easy hook-up to test equipment can greatly simplify the verification and debug phase 
of the design cycle. It can also be valuable to have a few pins routed out to pads. These pads 
enable easy connection to white wires that may be required to address future issues. Rout-
ing out signals for supporting design-for-test (DFT) functionality to support transition to an 
ASIC in the future should also be considered. 

Consideration should be given to incorporating zero-ohm jumpers in-series with debug 
and expansion traces relatively close to the FPGA package. Placement of pull-up and pull-
down resistor footprints, and power and ground connections close to the zero-ohm jumper 
pads may also be implemented to increase future design options. These additional pads 
support access to otherwise inaccessible I/O pins allowing simplified addition of white wires 
to implement design updates if FPGA interface changes are required. These options support 
simplified debug and potential future design expansion while maximizing future design flex-
ibility. While these options can be very useful in prototype and development environments, 
they are less appropriate for volume production boards. 

Design Clock Considerations
The implementation of clocking signals, routing, pin assignment and clock management 
can be particularly complex for FPGA design. We will discuss some design factors related 
to clock implementation in this section. For example, it is possible that bringing a clock 
in on a specific dedicated clock pin may limit the use or functionality of other dedicated 
clock pins or use of internal global resources. Similarly, clock feedback inputs to an FPGA 
component may be limited to a few specific clock input pins. It may be possible to assign a 
general-purpose signal to a clock feedback input pin blocking access to this FPGA feature 
unintentionally. A mistake in clock-related pin assignment can severely limit the func-
tionality of a design implementation. It is critical that clock assignments be verified and 
double-checked against all available clock-related documentation. 

Effective clock implementation for high-performance FPGA-based systems benefit from 
the development of a well-defined clock implementation plan. FPGA designs generally 
require high input clock quality and careful clock management and implementation internal 
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to the FPGA. Factors that may degrade clock quality include clock jitter, clock skew and, 
duty cycle distortion. 

Clock jitter effects can significantly degrade the performance of implemented systems. 
The effects of clock jitter include reduced timing budget margin and performance. Clock 
skew describes a difference between related signal and clock arrival times. The effects of 
signal and clock skew include hold time failures, data errors and reduced I/O timing margin. 
Clock duty distortion can result in reduced pulse widths, data errors and unreliable circuit 
performance. The effects of clock jitter, skew and duty cycle distortion can impact all lev-
els of FPGA circuitry performance and should be carefully managed and controlled.

The following paragraphs present some FPGA clock design guidelines.

(1) Separate FPGA clocks into priority groups. Use constraints to more clearly char-
acterize clocks for the design tools. Constraints can be used to specify clock rates, phase 
relationships and duty cycles. Constraints can also be used to associate high-priority clocks 
with the circuitry they drive.

Clock Priority Groups

■ 	 High frequency with high fan-out

■ 	 Medium or low frequency with high fan-out

■ 	 High frequency with low fan-out

■ 	 Medium or low frequency with low fan-out

(2) Assign the highest priority clocks first. The two most significant FPGA clocking 
challenges are high speed and high fan-out. Clocks with these characteristics should be as-
signed to higher performance global resources. The number of high-performance buffers and 
routing resources are limited so they should be carefully managed. 

(3) Assign clock block management resources. Clock blocks, such as Xilinx’s Digi-
tal Clock Managers (DCMs) can implement advanced clock circuit functions including 
frequency division and multiplication, phase shifting, feedback-based adjustment and syn-
chronous clock generation. Clock blocks are limited resources within FPGA components. 
The design team should monitor and control how these resources are assigned.

(4) Manage lower priority clocks. While lower priority clocks can be implemented on 
full-FPGA global resources if they are available they can also be routed through the standard 
FPGA routing fabric. It may be possible to break global clock routes into multiple smaller 
high-performance clock routes. 

Examples include breaking a global clock route with the potential to supply a clock to 
the entire FPGA into smaller circuits capable of routing a clock to half or a quarter of the 
FPGA. Routing a clock via a subsection global route may require the clock to be input to 
specific I/O pins. Once again, this stresses the importance of careful pin assignment.
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9.2.4  Timing Constraints 
Timing constraints may be used to influence and guide the placement of design elements and 
signal routes between placed elements in order to meet design performance requirements. 
The two general types of timing constraints are global and path-specific. Global timing con-
straints cover all paths within the logic design. Path-specific constraints cover specific paths. 
This section provides some guidelines on timing constraint of an FPGA design.

(1) Identify and constrain system clocks. The timing constraint process should start 
with the specification of the global timing constraints for all identified system clocks. 

(2) Identify and create signal path groups. The two primary types of path groups are 
global and specific. A global group typically includes a group of paths between registers, 
input paths, and output paths. Ideally these paths should be within the same clock domain. 
Specific paths are mostly static or combinatorial paths, paths between clock domains, or 
multicycle paths. Multicycle paths are defined as paths between logic elements that have a 
timing requirement that is a multiple of the clock period for the logic elements. For example, 
if a series of logic functions require more than a singe clock cycle to complete, the data will 
be correct at the circuit output (the input to the next synchronous design element block) 
after the pipeline has been filled.

(3) Assign global constraints. The general rule of thumb when assigning constraints is 
to use global constraints for primary coverage of a majority of the design paths. Apply global 
period constraints to the design before the HDL synthesis phase. With access to timing con-
straints, synthesis tools may attempt to optimize the synthesized design to meet the specified 
timing requirements.

 A common design optimization approach is to intentionally over-constrain the design 
period during the synthesis process. This approach will potentially reduce the amount of 
time required to meet timing objectives. 

Within the design cycle, there is a trade-off between the synthesis phase and the imple-
mentation phase of the design flow. Increasing the length of the synthesis phase to reduce 
the length of the implementation is generally a good choice, since the implementation phase 
is executed far more often than the synthesis phase during a typical design development.

A goal of 1.5 or 2 times faster than the desired design period is a good rule of thumb 
during the synthesis phase. If the choice is made to over-constrain the synthesis design 
tools, make sure to prevent the higher-value constraints from being passed forward to the 
implementation tools. This can generally be accomplished via a tool switch option or by 
removing access to the synthesis constraint file.
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 (4) Assign detailed group and individual path constraints. Use path-specific con-
straints for paths within the design that justify exceptions to the general constraints already 
assigned. Do not over constrain the paths; more is not better within the design implemen-
tation phase. The more detailed design path constraints are:

■ 	 Multicycle

■ 	 False path

■ 	 Critical path (for example, From:To) 

To explore the finer points of adding time constraints to an FPGA design, two examples 
are given. The first example involves using timing constraints to specify timing between the 
system clock and data inputs. 

The timing constraint shown in the first example specifies the clock and data signal rela-
tionships and timing to ensure that internal FPGA register setup and hold time requirements 
are not violated. The OFFSET_IN_BEFORE constraint is used to define how long the data 
signal should be valid before the system clock’s rising edge arrives at the FPGA clock pin. 
The VALID constraint is used to specify both the amount of time the data signal is valid and 
the amount of time the data signal is valid after the rising edge of the system clock. The tim-
ing relationships of these two constraints provide the implementation tools the information 
required to optimally implement the design. Figure 9.1 illustrates the timing and relation-
ships of the clock and data signals. 
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Figure 9.1  Input constraint example

The second example involves the routing of a signal from a register internal to an FPGA 
to an external component using a system synchronous timing approach. Understanding the 
FPGA to external device timing requirements is the first step in the constraint process. The 
external component interface I/O standard, the routing delay to the external component 
and the loading of the FPGA I/O pin must be determined. Knowing the detailed timing 
values supports the assignment of a timing constraint specifying the maximum time the data 
signal has to propagate from the output of the internal FPGA register to the FPGA output 
pin. The internal delay of the FPGA includes the clock path delay, register clock to output 
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time, and the data path delay from the register to the output pin. Based on these constraints, 
the implementation tools can determine a path route which will meet the specified timing 
requirements. Figure 9.2 illustrates the timing relationship for this constraint use.

Figure 9.2  Output constraint example
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9.2.5  Area Constraints and Floorplanning 
Area constrains guide and control where the place-and-route tools may locate FPGA design 
elements. Area constraints may also define a potential placement region for design elements. 
A benefit of area constraining is the potential to reduce place-and-route tool implementa-
tion time. If the block element is area constrained, the place-and-route tool does not have 
to search for a location to place a block element. The process of laying out multiple design 
element blocks onto the target FPGA architecture is commonly referred to as floorplanning. 
Figure 9.3 illustrates the concept of FPGA floorplanning. 

Figure 9.3  Example FPGA floorplan
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Floorplanning also supports relationally placed macros (RPMs). Floorplanning is made 
easier if the design hierarchy is maintained. However, floorplanning may unintentionally cause 
the implemented design performance to be degraded. This is a consequence of the inability of 
the implementation tools to override placement constraints. Floorplanning can cause some 
design layout options to not be available to the design tools, and implemented performance can 
suffer as a consequence. In certain designs, it may be appropriate to implement the floorplan-
ning effort early in the design optimization process. Taking this step requires a strong design 
and target architecture knowledge and sufficient available design margin.

Floorplanning may be used to place specific design elements, such as block memories, 
within the FPGA. The placement of design elements should be based on knowledge of 
which design blocks the elements will interface with and where those design elements 
(including hard IP functions) will or should be implemented. Other design situations that 
may benefit from area constraint or location placement include interleaved logic from two or 
more design blocks and distributed memory implementations. 

The primary objective of hierarchical block floorplanning is to guide the flow of data 
through the FPGA. Floorplanning will be heavily influenced by the location and distribution 
of clock resources and fixed functionality within the FPGA. As discussed in the hierarchical 
design section of Chapter 7, it is desirable to register the inputs and outputs of each major 
design block to be floorplanned. This provides the best timing margin possible and increases 
potential successful layout alternatives since the block-to-block interfaces will only require a 
routing path with no logic elements. 

Area constraints are most effective when the design has been intelligently sectioned 
into functional blocks. Data path-oriented design blocks generally benefit from floor-
planning. Place-and-route tools can typically place and locate state machines and other 
non-structured logic efficiently. The following list presents some considerations associated 
with area constraining and floorplanning an FPGA design.

Area Constraining and Floorplanning Considerations

■ 	 Depending on the tool, area constraints may not be recommended to overlap; refer to 
tool documentation for guidance

■ 	 Floorplanning is effective on data-path logic and hierarchical designs

■ 	 Floorplanning should be done with an awareness of the target FPGA architecture

■ 	 Develop a detailed understanding of intended design functionality

■ 	 Effective floorplanning may be an iterative process

■ 	 Avoid design over-constraint

9.2.6  Constraint Example 
A functional implementation example will help demonstrate the relationships between the 
different design constraint categories. Consider a design team with a project requirement 
to implement a PCI bus interface that is PCI-compatible but not fully PCI-specification 
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compliant. The team will not be able to use a pre-verified IP core, but will need to develop a 
custom implementation. 

The PCI specification defines the maximum signal trace length from the card-edge con-
nector to any interface circuitry. This minimizes the bus loading at the system level, and 
limits the board-level signal propagation delays. Thus, the available signal assignments to 
I/Os at the FPGA package are limited by the placement and orientation of the FPGA com-
ponent on the PCI-daughter card layout. 

Once the FPGA device placement and orientation is defined in relation to the PCI 
card-edge connector, the design team may verify that the required PCB signal trace length 
requirements can be met. The PCI data bus and control signals need to be assigned within a 
select group of I/O pins on the FPGA. Defining the select group of pins on the FPGA pack-
age to assign the PCI interface signals to can be relatively involved. The selection process is 
complicated by the interrelationship between the available FPGA I/O banks, the available 
I/O pins and the relative relationships of the FPGA package’s I/O pins to the location of the 
die-level I/O pads.

The design team knows the number of required I/O pins and the protocol standards 
the PCI interface requires (3.3V versus 5.0V, etc.). The design team will select one or more 
I/O banks with sufficient available I/O pins to support the required number of signals (with 
some project-defined margin). Each of these selected I/O banks will be configured to imple-
ment the required protocol standard. As discussed previously, only certain I/O standards can 
co-exist within an individual I/O bank. If other standards are required within the design that 
are not compatible with the PCI protocol, I/O banks must be set aside to support the other 
protocol standards. 

With the I/O banks identified, the design team can assign the signals to the appropriate 
pins. After the I/O pins have been assigned, the design team can configure any other I/O 
pin-related characteristics the design requires. FPGA I/O configurable characteristics include 
faster signal slew rate, impedance matching, and weak pull-up or pull-down functionality. 

Next, the design team may begin implementing the area and timing constraints that the 
FPGA design tools will use to guide the resource location assignments and signal routing for 
the critical functionality of the PCI interface. The area constraints will define the desired 
relationship between the group of pins selected for the PCI interface at the board level, and 
the implemented PCI circuitry within the FPGA. Since the performance of the PCI inter-
face circuitry is critical, the area assignments should group the timing-critical parts of the 
design relative to both the selected I/O pin group and the location of any PCI functionality 
within the FPGA. 

The area constraints must strike a balance between keeping the circuitry tightly clus-
tered and providing enough margin to allow the placement and routing routines to route 
other functionality through the specified area. This allows the overall functional and timing 
requirements of the FPGA to be met. Similarly, timing constraints should be tight enough to 
guide the layout tools to achieve the required performance without driving the tools to seek 
a performance level beyond what the design requires. 
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If changes are made to any of these constraint groups, they must be evaluated to ensure 
that they won’t cause changes in one or more of the other groups as well. Potential reasons 
for constraint changes include design functionality changes or an FPGA reorientation on the 
board. In this example, if the FPGA package needed to be rotated 180 degrees, each of the 
constraint groups will need to be re-evaluated and re-implemented. Each design is unique, 
and the relationships between the design constraint groups will be just as unique. 

9.2.7  Constraints Checklist 
The following list presents FPGA design constraint guidelines.

✔ Design Optimization and Constraints Checklist

❑ Develop and follow a design constraint plan

❑ Add constraints incrementally

❑ Constrain from general to specific

❑ Add only enough constraints to consistently meet functional and timing 
requirements

❑ Achieving higher performance requires a balanced mix of design constraints

❑ Designers need to be familiar with timing report context and analysis

9.3  Design Optimization 
As applications implemented within FPGAs increase in speed, complexity and resource utili-
zation, meeting performance requirements requires additional efforts. The following sections 
present a generalized FPGA design optimization flow. The process is based on the principle 
that the minimum amount of effort should be expended to get a design to meet its timing 
requirements. The individual design blocks should be captured and initially verified by simu-
lation. The individual design blocks can then either be initially independently implemented 
or integrated, and then implemented as a system. 

When it has been determined that the design does not meet timing, then the incremen-
tal changes discussed in this optimization flow should be made to hopefully ultimately enable 
the design to meet the required timing performance. Once the design consistently meets its 
timing performance requirements, no additional design constraints or design changes are 
required. Additional effort may be expended and performance may continue to improve; 
however, if the requirement is to achieve a certain level of performance, any effort expended 
to achieve performance beyond that level will not be a productive use of resources. 

Optimization of an FPGA design can be a challenging design phase. There are many 
different approaches requiring different levels of effort. The order in which optimization ef-
forts occur is important since some optimization activities can affect the results of previously 
applied efforts. Following an established optimization procedure can help make the optimi-
zation phase more efficient. 

Some optimization approaches can affect the results of previously applied optimization 
activities, so an established optimization methodology can make the design optimization 
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effort more efficient. The sequence of activities presented here is not absolute. It is intended 
as a guide; changes may be made based on prior experience, familiarity with the design, and 
personal preference. 

This chapter presents an overview of a generalized incremental optimization design 
flow, starting with the lowest possible level of effort and working up through more involved 
optimization approaches. Additional design adjustments and modifications are iteratively 
applied to the design in an ordered sequence until the design consistently meets the desired 
performance requirements.

The objective of applying successive design optimization techniques is to avoid spending 
any more time or effort optimizing the design than necessary, while also reducing the risk of 
over-constraining the design.

9.3.1  FPGA Design Optimization Process 
Timing closure can become difficult for large and complex FPGA designs. The process of 
obtaining timing closure will typically include multiple incremental HDL modification 
iterations, constraint refinement, design re-implementation (synthesize, place and route), 
and repeated timing analysis. A well-defined and organized design implementation flow is 
important to efficient design optimization. Figure 9.4 presents a suggested design implemen-
tation optimization flow. The design optimization flow presented in this section is based on 
the flow presented in Rhett Whatcott’s Xilinx TechXclusives article, Timing Closure – 6.1i. 

Figure 9.4  FPGA design optimization flow

KEY
POINT

Use a good design 
approach

Use good design 
entry techniques

Control synthesis 
tool options

Implement informed 
pin assignments

Assign global 
timing constraints

Review performance 
goals and timing objectives

Refine implementation 
tool options

Assign path-specific 
timing constraints

 

Specify critical path constraints 
to the synthesis tools

Adjust implementation 
tool effort and options

2

3

4

5

6

7

8

9

10

11

1

Floorplan design or
 implement physical synthesis

12

Perform timing analysis



151

Design Constraints and Optimization

(1) Use a good design approach. As always, synchronous design techniques are strongly 
recommended. Implement strong, organized hierarchical design structures. Keep design mod-
ules and blocks to a manageable size. Partition design blocks intelligently as discussed in the 
implementation chapter.

(2) Use good design entry techniques. Use an HDL design entry method following de-
fined coding standards and styles. Adopt and use a common coding standard. Comment code 
to clarify intent. When appropriate, use cores and design instantiation rather than relying on 
inference. Implement code that will take advantage of the specific resources available within 
the targeted FPGA component hardware architecture (fabric and routing resources). 

(3) Control synthesis tool options. Research and understand the available synthesis tool 
directives, switches, constraints and operational modes. Follow the synthesis tool vendor 
guidelines provided to obtain the best design results. In order to maintain design portabil-
ity between different synthesis tools, enter synthesis constraints through the synthesis tool 
constraint editor. 

(4) Implement informed pin assignments. In rapid system prototyping, pin assignment 
will occur early in the design cycle. Research and understand the details of the FPGA fabric 
and architecture. Make pin assignments and assign constraints that take into account the 
design signal and control flow, board component relationships and FPGA fabric architec-
ture. It may be possible that the pin assignment occurs even earlier in the process before the 
design has been synthesized.

(5) Assign global timing constraints. The objective of this stage is to specify the global 
timing for each design clock. Path-specific constraints can be added to either the synthesis or 
implementation tools. Adding path-specific constraints to the synthesis design tools causes 
additional architectural optimization to occur. Adding path-specific constraints to the design 
forces the tools to increase the priority on the specified paths during the place-and-route 
cycle. A combination of these two approaches can leverage a design toward meeting timing 
requirements. 

(6) Review performance goals and timing objectives. Review the design report files. 
Static timing analysis is used to evaluate how close the implemented design is to meeting or 
exceeding the required timing. Once the design has been implemented into logical design 
elements, the delay through the logic elements of the design will be defined. The logic delays 
will remain fixed through the final design implementation. 

At this point in the design cycle, it is possible to evaluate the design’s implementation 
against the 60/40 rule. This rule specifies that 60% or less of the timing budget should be 
consumed by the logic portion of a signal connection while the routing portion of the con-
nection should take 40% or more of the budget. If this design guideline is met, the tools have 
a better chance to achieve the required timing performance. Having 40% or more of the 
available routing time (the clock period) available for signal routing is a general guideline, 
the appropriate ratio for each design may vary based on the target architecture. The 60/40 
rule is intended to provide a measure of “goodness” at this stage of the design cycle. 
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(7) Refine implementation tool options. With a design close to meeting timing require-
ments, some minor adjustments to the implementation tools (mapping and place and route) 
may allow the design to pass without having to add advanced timing constraints to the design. 

Once global (and possibly high-level path-specific) constraints have been added to the 
design, the design team may make adjustments to the level of effort of the implementa-
tion tools. For example, the level of place-and-route effort can be adjusted from standard 
to a higher level. If multiple effort levels are available, it is advised that the effort level be 
increased one level at a time, rather than from lowest to highest all at once. Again, the 
objective is to apply only as much effort as required. Higher effort levels will naturally extend 
the time required to complete the place-and-route implementation effort, thus leading to a 
longer implementation cycle time. 

Changing the implementation tool effort level has the advantage of avoiding the need to 
make changes to the design code. If the timing requirements cannot be met by increasing the 
level of implementation effort, other approaches must be applied. 

(8) Assign path-specific timing constraints. If the design does not meet timing require-
ments with the application of global timing constraints and adjustments to the synthesis and 
implementation tools, it may be necessary to apply more detailed timing constraints. Apply-
ing constraints is typically an iterative process. Well-considered additional design constraints 
may help the implementation tools prioritize the place-and-route design efforts. Potential 
modifications to the code may also be required. The utilization of cores or FPGA architec-
ture-specific coding structures may be required to improve performance. 

(9) Perform timing analysis. Take time to review the design timing analysis reports. 
Ensure that all paths are fully optimized. If paths are identified that are not meeting timing, 
make changes to adjust the way these paths are implemented. 

(10) Specify critical path constraints to the synthesis tools. Use constraints to iden-
tify critical paths to the synthesis tools to guide more targeted design implementation. This 
effort will likely be iterative. For maximum design portability, implement constraints via the 
synthesis tool constraint editor.

(11) Adjust implementation tool effort and options. Make adjustments to advanced 
implementation tool options. These adjustments will likely increase the implementation 
cycle processing time. This results in a trade-off between time and results. These design 
optimization efforts occur later in the optimization flow, since they tend to increase the 
length of the design implementation phase and make each design update cycle significantly 
longer, which can be a significant penalty in designs that must be implemented many times. 

Changes can also be made to the design packing and placement tool efforts. Setting tool 
switches to force placement and routing of critical signals early in the optimization cycle can 
result in significant design performance improvements. Again, higher levels of effort will 
increase design implementation times. 
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Another option involves adjusting the number of place-and-route cycles run. Increas-
ing the number of place-and-route cycles causes the design to be implemented with different 
design implementation priorities, increasing the odds of achieving a successful design place-
ment and routing combination. One advanced implementation approach involves running 
many placements, and then only routing the “best” placements.

(12) Floorplan design or implement physical synthesis. The design place-and-route 
phase may be guided by specifying floorplanning constraints that direct design elements to 
specific locations on the FPGA fabric. This is saved as one of the last design optimization 
approaches, since floorplanning can unintentionally make certain timing paths worse. This 
factor is compounded by the fact that the tools cannot override the placement constraints. 

Make sure to allow enough margin within each placement block or range to allow the 
implementation tools sufficient margin to implement the design efficiently in parallel with 
other design functionality which may need to be co-located within that specific area of the 
FPGA fabric. Make sure to review tool restrictions. For example, some tools do not encour-
age layout block overlap and may actually restrict placement within overlapping areas. 

Another advanced option involves using a physical synthesis tool, which has a level of 
awareness of the target FPGA architecture, structure and available resources. Physical syn-
thesis implements a design that co-locates related logic functionality in the physical design 
for reduced routing overhead. Physical synthesis is related to design floorplanning since it 
influences and guides the placement of logic to assist meeting timing objectives. Physical 
synthesis tools can provide a 10–20% improvement in system timing. Most physical synthesis 
tools are not provided as part of the basic manufacturer tool suite. Physical synthesis tools are 
more efficient when operating on synchronous designs. 

9.4  Summary 
The four types of constraints include synthesis, pin, area and timing. Synthesis constraints are 
used to instruct the synthesis tool on how to map the HDL code to RTL occurs. Pin con-
straints are used to specify the assignment of I/O. Area constraints are used to instruct where 
the place-and-route tool can locate a specified design block partition. Timing constraints are 
used to specify path delays. Timing constraints can be global or path-specific.

Floorplanning is the process of guiding the placement of multiple design partitions onto 
the FPGA fabric. Design constraints, floorplanning and tool options can influence the design 
optimization. For example, floorplanning can be used to optimize the FPGA fabric area. 
Constraining a design for a minimum area results in fewer routing resources used with smaller 
interconnect distances. This means faster signal paths and implementation times. The result 
is a design that takes up less FPGA fabric area and has increased performance, and faster 
implementation times. Floorplanning is a powerful speed and area optimization technique if 
done properly. However, there are no set rules for properly floorplanning a design. 
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Design optimization is an incremental process that applies increasing engineering effort 
and tool computational time to leverage the design to meet timing. Most of the effect on 
the ability of the design to meet timing is derived from the original design implementa-
tion. Synchronous design, design modularization, a formal design hierarchy with registered 
boundaries, and good HDL coding can all positively influence the ability of the design imple-
mentation tools to achieve the desired timing performance.


