RF and Digital Signal Processing for Software-Defined Radio
RF and Digital Signal Processing for Software-Defined Radio

A Multi-Standard Multi-Mode Approach

Tony J. Rouphael
For my son, John Joseph Rouphael,
You are the wind beneath my wings.

Now I am the last to keep Vigil,
like a gleaner after the vintage;
Since by the Lord’s blessing I have made progress
till like a vintager I have filled my winepress,
I would inform you that not for myself only have I toiled
but for every seeker after wisdom.

The book of Sirach 33:16-18
Contents

Acknowledgments ... xi

Chapter 1: Introduction .. 1
1.1 The Need for Software-Defined Radio 1
1.2 The Software-Defined Radio Concept 2
1.3 Software Requirements and Reconfigurability 4
1.4 Aim and Organization of the Book 4
 References ... 6

Chapter 2: Common Analog Modulation and Pulse-Shaping Methods 7
2.1 Amplitude Modulation 8
2.2 Frequency and Phase Modulation 13
2.3 Common Pulse-Shaping Functions 18
 References ... 24

Chapter 3: Common Digital Modulation Methods 25
3.1 Channel Capacity Interpreted 26
3.2 PSK Modulation 30
3.3 FSK Modulation 43
3.4 Continuous Phase Modulation (CPM) 56
3.5 Gaussian MSK (GMSK) 56
3.6 On-Off Keying (OOK) 59
3.7 Quadrature Amplitude Modulation (QAM) 61
3.8 Orthogonal Frequency Division Multiplexing (OFDM) 65
3.9 Spread Spectrum Modulation 71
3.10 Appendix ... 76
 References ... 83
Contents

Chapter 4: High-Level Requirements and Link Budget Analysis .. 87
4.1 High-Level Requirements ... 88
4.2 Link Budget Analysis .. 100
4.3 Cascaded Noise Figure Analysis ... 117
 References .. 122

Chapter 5: Memoryless Nonlinearity and Distortion ... 123
5.1 1-dB Compression Point Due to Memoryless Nonlinearities 124
5.2 Signal Desensitization and Blocking ... 128
5.3 Intermodulation Distortion ... 129
5.4 Cascaded Input-Referred Intercept Points 140
5.5 Cross Modulation Distortion .. 142
5.6 Harmonics .. 149
5.7 Phase Noise and Reciprocal Mixing ... 152
5.8 Spurious Signals ... 154
5.9 Appendix .. 155
 References .. 160

Chapter 6: Transceiver System Analysis and Design Parameters 161
6.1 Receiver Selectivity ... 161
6.2 Receiver Dynamic Range ... 165
6.3 AM/AM and AM/PM .. 167
6.4 Frequency Bands, Accuracy and Tuning 172
6.5 Modulation Accuracy: EVM and Waveform Quality Factor 175
6.6 Adjacent Channel Leakage Ratio (ACLR) 194
6.7 Transmitter Broadband Noise .. 196
 References .. 198

Chapter 7: Uniform Sampling of Signals and Automatic Gain Control 199
7.1 Sampling of Lowpass Signals .. 199
7.2 Sampling of Bandpass Signals .. 207
7.3 The AGC Algorithm ... 216
7.4 Appendix .. 233
 References .. 234
Contents

Chapter 8: Nyquist-Rate Data Conversion

8.1 Nyquist Converters .. 235
8.2 Overview of Nyquist Sampling Converter Architectures 266
8.3 Appendix ... 275
 References ... 277

Chapter 9: $\Delta \Sigma$ Modulators for Data Conversion

9.1 The Concept of $\Delta \Sigma$ Modulation .. 279
9.2 Comparison between Continuous-Time and Discrete-Time $\Delta \Sigma$ Modulation 285
9.3 SQNR Performance of $\Delta \Sigma$ Modulators 300
9.4 Bandpass $\Delta \Sigma$ Modulators .. 308
9.5 Common Architectures of $\Delta \Sigma$ Modulators 313
9.6 Further Nonidealities in $\Delta \Sigma$ Modulators 316
 References ... 317

Chapter 10: Multirate Digital Signal Processing

10.1 Basics of Sample Rate Conversion .. 319
10.2 Filter Design and Implementation ... 340
10.3 Arbitrary Sampling Rate Conversion ... 364
 References ... 375

Index

.. 377
Acknowledgments

I am deeply indebted to many individuals without whom this book would not have been a reality. Special thanks go to Harry Helms, Rachel Roumeliotis, Heather Scherer, Rajashree Satheesh Kumar, and Anne McGee from the editorial staff at Elsevier for all their help and guidance all throughout the writing of this book. I also would like to express my most sincere gratitude to the various reviewers who were instrumental in preparing the final manuscript. I especially would like to thank David Southcombe, Farbod Kamgar, Scott Griffith, Sumit Verma, Ricke Clark, Hui Liu, Mariam Motamed, and Kevin Shelby. Finally I would like to thank my wife Tabitha for all her love, support, and constant encouragement. Without her this book would not have been completed. Toby you are my guardian angel!