Product Development
To those who see the forest, not just the underbrush
To our families, friends, and colleagues
Table of Contents

Preface xv
Biographical Sketches xvii

Chapter 1
The Significance of Manufacturing

1.1 Globalization and the World Economy 1
1.2 Importance of Manufacturing 4
1.3 What Is Manufacturing? 6
1.4 Some Basic Concepts 7
 1.4.1 Capital Circulation or the Production Turn 8
 1.4.2 Manufacturing Capability 9
 1.4.3 Mass Production 9
 1.4.4 Interchangeability 10
 1.4.5 Product Life Cycle 10
 1.4.6 The S Curve of the Technology Growth Cycle 11
 1.4.7 Simultaneous or Concurrent Engineering 11
 1.4.8 Design for ‘X’ 12
 1.4.9 The Engineering Problem-Solving Process 13
1.5 Summary 15
References 15

Chapter 2
Developing Successful Products

2.1 Introduction 17
2.2 Attributes of Successful Product Development 18
2.3 Key Factors to Developing Successful New Products 19
 2.3.1 Uniqueness 19
 2.3.2 Customer Focus and Market Orientation 20
 2.3.3 Doing the Homework 20
Table of Contents

2.3.4 Sharp and Early Product Definition 20
2.3.5 Execution of Activities 21
2.3.6 Organizational Structure and Climate 21
2.3.7 Project Selection Decisions 21
2.3.8 Telling the World You Have a Good Product 22
2.3.9 Role of the Top Management 22
2.3.10 Speed without Compromising Quality 22
2.3.11 Availability of a Systematic New Product Process 23
2.3.12 Market Attractiveness 23
2.3.13 Experience and Core Competencies 23
2.3.14 Miscellaneous Factors 24

2.4 Strategy for New Product Development 25
2.4.1 Determining the Company’s Growth Expectation from New Products 25
2.4.2 Gathering Strategic Information 25
2.4.3 Determining Existing Opportunities 26
2.4.4 Developing a List of New Product Options 28
2.4.5 Setting Criteria for Product Inclusion in the Portfolio 28
2.4.6 Creating the Product Portfolio 28
2.4.7 Managing the Portfolio 28
2.4.8 Developing New Product Plans 29

2.4 Summary 36

References 36

Chapter 3

The Structure of the Product Design Process

3.1 What Is Design? 37
3.2 The Changing Design Process 38
3.3 Design Paradigms 40
3.3.1 The Need for a Model 41
3.3.2 The Need for Redundancy 42
3.3.3 The Scale Effect 42
3.3.4 Avoiding Starting Problem Analysis in the Middle 46
3.3.5 Avoiding Confirming a False Hypothesis 46
3.3.6 Avoiding Tunnel Vision 49

3.4 The Requirements for Design 49

3.5 The Design Process 50
3.5.1 Problem Confronting the Designers 50
3.5.2 Steps of the Engineering Design Process 52
3.5.3 Defining the Problem and Setting Objectives 52
3.5.4 Establishing Functions, Setting Requirements, and Developing Specifications 60
3.5.5 Developing Provisional Designs 63
3.5.6 Evaluation and Decision-Making 66

3.6 Summary 67

References 70
Table of Contents

Chapter 4

Design Review: Designing to Ensure Quality

4.1 Introduction 71
4.1.1 Why Quality Control? 72
4.1.2 Reactive versus Proactive Quality Control 73

4.2 Procedures for Incorporating High Quality in Design Stages 74
4.2.1 Six Sigma 74
4.2.2 Mistake Proofing (*Poka-Yoke*) 75
4.2.3 Quality Function Deployment 76
4.2.4 Design Review 79

4.3 Case Studies 84
4.3.1 A Design Review Case Study 84
4.3.2 A Six Sigma Case Study 84

References 90

Chapter 5

Consideration and Selection of Materials

5.1 Importance of Material Selection in Product Manufacture 93
5.2 Economics of Material Selection 96
5.3 Material Selection Procedures 96
5.3.1 Grouping Materials in Families 96
5.3.2 Grouping Materials Based on Process Compatibility 97
5.3.3 Super Materials and Material Substitution 99
5.3.4 Computer-Aided Material Selection 99

5.4 Design Recommendations 102
5.4.1 Minimize Material Costs 102
5.4.2 Ferrous Metals, Hot-Rolled Steel 103
5.4.3 Ferrous Metals, Cold-Finished Steel 103
5.4.4 Ferrous Metals, Stainless Steel 106
5.4.5 Nonferrous Metals 106
5.4.6 Nonmetals 107

References 111

Chapter 6

Selection of Manufacturing Processes and Design Considerations

6.1 Introduction 113
6.1.1 Primary Processes 113
6.1.2 Secondary Processes 114
6.1.3 Tertiary Processes 116

6.2 Design Guidelines 116
6.2.1 Design Guidelines for Casting 116
6.2.2 Design Guidelines for Forging 121
6.2.3 Design Guidelines for Extrusion 122
6.2.4 Design Guidelines for Metal Stamping 123
6.2.5 Design Guidelines for Powdered Metal Processing 124
Chapter 7
Designing for Assembly and Disassembly

7.1 Introduction 135
 7.1.1 Definition and the Importance of the Assembly Process 135
 7.1.2 Definition and the Importance of the Disassembly Process 135

7.2 Design for Assembly 136
 7.2.1 Definition 136
 7.2.2 Different Methods of Assembly 136

7.3 Design Guidelines for Different Modes of Assembly 137
 7.3.1 Manual Assembly 137
 7.3.2 Automatic Assembly 139
 7.3.3 Robotic Assembly 140

7.4 Methods for Evaluating Design for Assembly 140
 7.4.1 The Hitachi Assemblability Evaluation Method 141
 7.4.2 Lucas DFA Evaluation Method 142
 7.4.3 The Boothroyd-Dewhurst DFA Evaluation Method 144

7.5 A Design for Assembly Method Based on MTM Standards 149

7.6 A Design for Assembly Case Study 151

7.7 Design for Disassembly 153
 7.7.1 Definition 153
 7.7.2 Disassembly Process Planning 156

7.8 Design for Disassembly Guidelines 157

7.9 Disassembly Algorithms 159
 7.9.1 Product Recovery Approach 159
 7.9.2 Optimal Disassembly Sequence Planning for Product Recovery 160
 7.9.3 Disassembly Sequence Planning for a Product with Defective Parts 162
 7.9.4 Evaluation of Disassembly Planning Based on Economic Criteria 162
 7.9.5 Geometric Models and CAD Algorithms to Analyze Disassembly Planning 164
 7.9.6 Automation of Disassembly Technology and Predicting Future Trends 164

7.10 A Proactive Design for Disassembly Method Based on MTM Standards 165

7.11 A Design for Disassembly Case Study 166

7.12 Concluding Remarks 176

References 177
Chapter 8
Designing for Maintenance

8.1 Introduction 179
 8.1.1 Importance of Designing for Maintenance 179
 8.1.2 Factors Affecting Ease of Maintenance 180

8.2 Maintenance Elements and Concepts 182
 8.2.1 Maintenance Elements 182
 8.2.2 Maintenance Concepts 182
 8.2.3 Design Review for Maintainability: Planning for Maintenance and Its Management 186

8.3 Mathematical Models for Maintainability 190
 8.3.1 Simple Models 191
 8.3.2 An Integrated Approach to Maintenance 192
 8.3.3 Capital Replacement Modeling 193
 8.3.4 Inspection Maintenance 193
 8.3.5 Condition-Based Maintenance 193
 8.3.6 Maintenance Management Information Systems 194

8.4 Prediction Models for Maintenance 195
 8.4.1 The RCA Method 195
 8.4.2 The Federal Electric Method 198
 8.4.3 The Martin Method: TEAM 199
 8.4.4 The RCM Method: Maintenance Management 201
 8.4.5 Design Attributes for Enhancing Maintainability 203
 8.4.6 The SAE Maintainability Standard 204
 8.4.7 The Bretby Maintainability Index 209

8.5 A Comprehensive Design for a Maintenance Methodology Based on Methods Time Measurement 214
 8.5.1 A Numeric Index to Gauge the Ease of Maintenance 215
 8.5.2 Role of Work Standards and Standard Times 218
 8.5.3 Common Maintenance Procedures and the Parameters Affecting Them 218
 8.5.4 Provision for Additional Allowances for Posture, Motion, Energy, and Personnel Requirements 218
 8.5.5 Design Parameters Affecting Premaintenance Operations 220
 8.5.6 Structure of the Index 222
 8.5.7 Using the Index 227
 8.5.8 Priority Criteria for Design Evaluation 227

8.6 Developing and Evaluating an Index 228
 8.6.1 Numeric Index and Design Method for Disassembly and Reassembly 228
 8.6.2 Numeric Index and Design Method for Maintenance 229
 8.6.3 Priority Criteria for Maintenance 229
 8.6.4 A Holistic Method for Maintainability 231
 8.6.5 Design Modifications and Measures to Enhance Ease of Maintenance 232

8.7 Design for Maintenance Case Study 232

8.8 Concluding Remarks 236

References 237
Chapter 9
Designing Products for Functionality

9.1 Introduction 241
 9.1.1 Definition and Importance of Functionality 241
 9.1.2 Factors Affecting Functionality 241

9.2 Concurrent Engineering in Product Design 242
 9.2.1 Functionality in Design 244
 9.2.2 Function and Functional Representations: Definitions 244

9.3 A Generic, Guideline-Based Method for Functionality 247
 9.3.1 Phase 1. Development of Generic Criteria for Functionality 248
 9.3.2 Phase 2. Validation and Testing of Developed Criteria and Processes 249

9.4 The Procedure for Guideline Development 251

9.5 Functionality Case Study: Can Opener 254
 9.5.1 Can Opener Architecture 254
 9.5.2 Can Opener Manufacturing Processes 254
 9.5.3 Guideline Development Process for the Can Opener 255
 9.5.4 Identification of Important Manufacturing Variables Affecting Functionality 255
 9.5.5 Functionality-Manufacturing Links 256
 9.5.6 Survey Development 258
 9.5.7 Statistical Analysis and Testing 261
 9.5.8 Hypothesis Test Results 268
 9.5.9 Discussion of the Results 269

9.6 Functionality Case Study: Automotive Braking System 270
 9.6.1 The Function of an Automotive Braking System 270
 9.6.2 The Components of an Automotive Braking System 271
 9.6.3 Wheel Cylinder Architecture 271
 9.6.4 Wheel Cylinder Manufacturing Processes 271
 9.6.5 Guideline Development Procedure for the Automotive Brake System 272
 9.6.6 Functionality-Manufacturing Links 274
 9.6.7 Survey Development 280
 9.6.8 Testing and Statistical Analysis 280
 9.6.9 Discussion of the Results 292

References 293

Chapter 10
Design for Usability

10.1 Introduction 295

10.2 Criteria for Designing and Manufacturing Usable Consumer Products 296
 10.2.1 Functionality 296
 10.2.2 Ease of Operation 297
 10.2.3 Aesthetics 298
 10.2.4 Reliability 298
10.2.5 Serviceability and Maintainability 299
10.2.6 Environmental Friendliness 300
10.2.7 Recyclability and Disposability 301
10.2.8 Safety 301
10.2.9 Customizability 302

10.3 Design Support Tools and Methodologies 303
10.3.1 Design for Producibility 303
10.3.2 Design for Assembly 303
10.3.3 Robust Design 304
10.3.4 Group Technology 304
10.3.5 Quality Function Deployment 305

10.4 Design Methodology for Usability 305
10.4.1 Development of Generic Usability Evaluation Checklists 305
10.4.2 Development of Generic Design and Manufacturing Checklists 306
10.4.3 Reliability and Validity Testing 307
10.4.4 Testing the Effectiveness of the Design/Manufacturing Guidelines 307

10.5 Generic Checklist Design: Methods and Case Studies 307
10.5.1 Product Development for the Usability of a Can Opener 308
10.5.2 Product Development for the Usability of a Toaster 318
10.5.3 Checklists for Evaluating the Usability of a Consumer Product 327

10.6 Case Study for the Development of Customized Checklists 345
10.6.1 Gauging User Requirements 345
10.6.2 Technical Requirements 348
10.6.3 Product and Process Characteristics 350
10.6.4 Manufacturing Process Attributes 353
10.6.5 Development of Usability and Design Checklists 356

10.7 Concluding Remarks 365
References 365

Chapter 11

Establishing the Product Selling Price

11.1 Why Estimate Costs? 369
11.2 Cost and Price Structure 370
11.3 Information Needs and Sources 373
11.4 Estimating Direct and Indirect Costs 374
11.4.1 Direct Labor Costs 374
11.4.2 Direct Material Costs 376
11.4.3 Indirect or Overhead Costs 380
11.4.4 An Example 381

11.5 Product Pricing Methods 382
11.5.1 Conference and Comparison Method 383
11.5.2 Investment Method 383
11.5.3 Full Cost Method 383
11.5.4 Direct Costing or Contribution Method 383
Chapter 12
Assessing the Market Demand for the Product

12.1 Why Assess the Market Demand? 385
12.2 Methods for Assessing the Initial Demand 387
12.2.1 Expert Evaluation Technique 387
12.2.2 Jury of Executive Opinion 387
12.2.3 Delphi Method 388
12.2.4 Sales Force Composite 388
12.2.5 Supply Chain Partner Forecasting 388
12.2.6 Market Research 388
12.2.7 Decision Tree Diagram 390
12.2.8 Market Potential–Sales Requirement Method 391
12.3 Methods for Determining the Annual Growth 391
12.3.1 Graphical Displays of Data 391
12.3.2 Constant Mean Model 394
12.3.3 Linear Model 395
12.3.4 Quadratic Model 395
12.3.5 Exponential Model 397
12.4 Adjusting for Seasonal Fluctuations 398
12.4.1 Naive Model 398
12.4.2 Moving Average Model 398
12.4.3 Exponential Smoothing 400
12.5 Summary 401

Chapter 13
Planning the Product Manufacturing Facility Design

13.1 Introduction 403
13.2 Determining the Location of the Manufacturing Facility 404
13.3 Developing the Preliminary Design for the Manufacturing Facility 407
13.3.1 Determining Space Requirements 407
13.3.2 Assembly Line Balancing 409
13.3.3 Systematic Layout Planning 412
13.4 Summary 415

References 416

Postscript 417
Index 419
Preface

Manufacturing is essential for generating wealth and improving the standard of living. Historically, developed countries have devoted at least 20% of their gross domestic product (GDP) to manufacturing. It is unlikely that any nation would achieve the "developed" status without a significant proportion of its GDP-related activities devoted to manufacturing. Furthermore, the manufacturing activities must culminate in production of high-quality products that people need and want, globally. The emphasis on a global market is critical in today’s economy, characterized by shrinking national boundaries and globalization of the marketplace. Not only should the products manufactured be wanted, these should be high-quality products that are reliable, economical, and easy to use and produce, and are brought to the market in a timely manner.

Efforts to develop, design, and manufacture a consumer product knowledge base, by and large, have been fragmented and can be categorized into two main domains. The first domain primarily comprises product developers who emphasize issues such as identifying the market, defining product features, and developing promotional strategies for the market. The second domain comprises mainly manufacturing and design engineers involved in the technical details of product design and manufacture. In this context, the emphasis to date has been on only manufacturing processes; to a very limited extent engineers have focused on issues of product assembly and maintenance.

As is evident, the development, design, and manufacture of consumer products entails not only the interests of people in both domains but also those of the consumer and the user (the two are not necessarily the same). Among their interests are attributes such as a product’s usability, its functionality, and how its function can be maintained and repaired. From the design and manufacturing perspective, there are many other important considerations, such as how the product components are assembled, how the product will be disassembled during the course of routine maintenance or troubleshooting and at the end of its life, and how the material-manufacturing-cost configuration will be optimized. Such a comprehensive approach to product development, design, and manufacture is lacking at present. Also, no books are available that propagate teaching such a comprehensive product development and design approach.

This book provides a comprehensive approach to product development, design, and manufacture and attempts to fill the existing void. While this comprehensive approach has been outlined in archival research publications and taught at the University of Cincinnati at the graduate level in its College of Engineering, it is yet to become widely available to students at large. This book
is intended to share our perspective on the entire product “development to manufacture” spectrum and emphasizes the “how-to” process.

Chapters 1 through 3 outline the importance of manufacturing in the global economy, what kinds of products to develop, and what is the general product design process. In other words, they discuss why manufacture, what to manufacture, and how to design what to manufacture. Then Chapters 4 through 10 discuss and describe specific methodologies dealing with the selection of material and processes, and designing products for quality, assembly and disassembly, maintenance, functionality, and usability. In Chapters 11 through 13, we cover some basics of manufacturing cost estimation, assessing (forecasting) market demand, and developing preliminary design of the facility to manufacture the developed product. While not directly related to product development and design, we consider this information critical in the overall product manufacture cycle.

While this book is intended for senior and starting level graduate students, it should prove useful to any product designer interested in cradle-to-grave design. It should be particularly useful to all design and manufacturing engineers, production engineers, and product design researchers and practitioners.

We wish to thank our numerous colleagues and many former students who have encouraged us to undertake the writing of this book, telling us time and again how much such an effort was needed. We hope we have not failed them and have met their expectations, partially if not fully.
Biographical Sketches

Anil Mital is Professor of Manufacturing Design and Engineering at the University of Cincinnati. He is also the former Professor and Director of Industrial Engineering and a Professor of Physical Medicine and Rehabilitation at the University of Cincinnati. Dr. Mital is the founding Editor-in-Chief Emeritus of Elsevier’s *International Journal of Industrial Ergonomics* and is the founding Editor-in-Chief of the *International Journal of Industrial Engineering — Theory, Applications, and Practice*. Dr. Mital has authored and coauthored nearly 500 publications, including 200 journal articles and 23 books. He has made over 200 technical presentations in various parts of the world. He frequently conducts seminars in different countries on a wide range of topics, such as work design, engineering economy, facilities planning, human-centered manufacturing, ergonomics, and product design. Dr. Mital is a Fellow of the Institute of Industrial Engineers (IIE) and the Human Factors and Ergonomics Society (HFES). He also is a recipient of IIE’s David F. Baker Distinguished Research Award, HFES’s Paul M. Fitts Educational Award, and the Society of Automotive Engineers’ Ralph Teetor Educational Award. Dr. Mital has been recognized by the Engineering Economy Division of IIE through its Eugene Grant Award and by the Society of Work Sciences through its M. M. Ayoub Award.

Anoop Desai is an Assistant Professor in the College of Science and Technology at Georgia Southern University, Statesboro. He received his Ph.D. in industrial and manufacturing engineering from the University of Cincinnati in 2006. Dr. Desai’s main research interests are product life-cycle management and design. His research deals extensively with Design for “X” principles, focusing primarily on green design, environment conscious manufacturing, and design and maintainability. He also is actively involved in research and teaching related to different aspects of engineering economy and new product development. Dr. Desai has written over 25 articles, including 13 journal papers, and his research work has been widely cited.

Anand Subramanian is a Senior Engineer at JFAssociates, Inc., based in the Washington, D.C., area. He received his doctoral and masters degrees in Industrial Engineering from the University of Cincinnati, Ohio, and a bachelor’s degree in Production Engineering from the University of Bombay, India. Dr. Subramanian has been associated with JFAssociates, Inc., since 2003, where his responsibilities include experimental design, data collection, statistical data analysis, and data interpretation and documentation. His areas of expertise include ergonomic evaluations, economic analyses, facilities planning, warehouse design, and time and motion studies. He
coauthored a number of journal publications and made presentations at a number of industrial engineering conferences.

Aashi Mital currently is pursuing degrees in Finance and Political Science at the University of Cincinnati. Her areas of interest include finance and accounting as well as journalism. She also enjoys history and the performing arts, including the theater, the opera, and dance.