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Foreword

 

Erich Gamma

 

As a professional software developer, I want to develop software as fast as
possible, as well as possible, and as stress-free as possible. Automated unit
tests help to bring me closer to this goal. They are a small investment,
which help me get confidence in the code I produce and maintain later on.
When I don’t have automated tests, I have to fall back on manual testing.
However, manual tests cannot be automatically repeated. Consequently,
the stress increases, particularly when they have to be done under time
pressure, which isn’t, of course, the exception. At the push of a button you
can determine at any given time whether or not the last change impacts
the fitness of your software. You can do this today, tomorrow, or any time in
the future, regardless of whether or not a deadline is knocking at your door.

This book by Johannes Link and contributor Peter Fröhlich is a practi-
cal introduction to using automated unit tests and the test-first approach
in your day-to-day software development. The automation framework
used in the book is JUnit. It is a small and simple framework for creating
and managing tests. However, more is needed for successful development
with unit tests. In fact, a developer has to be familiar with many different
testing techniques, in particular when unit tests have to be created in the
context of databases or distributed applications based on application serv-
ers. This book sheds light on these problems and is a highly welcome con-
tribution to the field of automated unit testing.

JUnit itself was also developed with automated unit tests and the test-
first approach, as explained in this book. In fact, the techniques were even
used under challenging conditions, such as while fighting jet lag or during
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Foreword

 

electric power failures in alpine cabins. Still, the techniques have proven
themselves every time. I hope that, thanks to this book, you will become
test infected and that in the future you will always be able to give a positive
answer to the classical unit test control question, “Where are the unit
tests?”

 

Erich Gamma

 

Co-author of JUnit
Technical Director, Object Technology International



 

Foreword

 

Frank Westphal

 

Do you remember your first programming experience? I don’t mean the
details of the computer or language used; I mean how did you feel?

I remember typing in a few statements from the programming hand-
book, eager to see the program run. It was amazing to watch how the code
sprang to life. Within a few hours I had grown the book example into what
seemed an impressive program. I had made additions here and there and
after every change I would rerun the program to see how it was doing. In
the evening I showed it to my parents. They could tell by the look in my
eyes how proud I was.

How things have changed. I enjoy programming more than ever, but
now and then I realize that some of the original fun is gone. It’s in these
moments that I reflect back on my first experience. Why can’t program-
ming always be like that?

Actually, it was in one of those moments that I came across the tech-
niques described in this book. Automated tests and continuous refactoring
applied in tandem brought me a bit closer to the beginning of my pro-
gramming career. More often than not since then, I have been able to act
like the only thing I have to do is write a few lines of code. But don’t be
fooled; these techniques are not only applicable to small programs. The
larger the scale, the more valuable these techniques became to me.

I was glad when Johannes asked me to write a second foreword for two
reasons. First, this book brings together the knowledge that a number of
pioneering extreme programmers wish they had when they started apply-
ing test-first programming five years ago. If you follow down that route,
you will invariably run into testing problems. Even though you are writing
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your tests first, you will come to halt because you won’t see how to test
your code. That’s natural. Actually, that’s the perfect time to reflect. Or to
pick up this book and read what Johannes tells us.

Second, I was going to write a book just like this one. However, when
Johannes shared with me the first few chapters for review, I could see that it
was well written and even covering a large suite of tools to support testing
code that is usually hard, if not impossible, to test. I wish I had written this
book. Therefore, writing an accompanying foreword is a great pleasure.

There is but one danger in reading this book. You might come away
with the impression that it’s all about techniques and tools. When in fact,
it’s all about you.

Test-infected programmers will tell you how the tests changed their
relationship to the code. There is a certain fascination in seeing a few hun-
dred tests passing and checking all the innards of your software. Indeed,
sometimes you will find yourself pressing the run button a few more times,
just for the extra kick that everything’s working fine.

 

Frank Westphal

 

Independent trainer and consultant
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Preface

When my German publisher told me that my book was going to be trans-
lated into English I was delighted: no work for lots of fame. This view was
more than naive. Despite the translator’s excellent job, the number of
errors and omissions uncovered by the reviewers was quite a revelation.

So I had to take the challenge and rewrite parts of a book that I had
already deemed finished and of high quality. What you hold in your hands
now is maybe 70% translation and 30% new, updated, and improved mate-
rial. And still I feel guilty for not having been able to seize all of the review-
ers’ suggestions.

As the book changed shape and went through heavy restructurings, my
life did as well. Thanks to all who supported me in one process or another.
These include the reviewers of both the German and the English versions:
Frank Adler, Achim Bangert, Markus Barchfeld, Ekard Burger, Frank
Cohen, Herbert Ehrlich, Eitan Farchi, Tammo Freese, Dierk König, Andreas
Leidig, Erik Meade, Steve Metsker, Rainer Neumann, Christian Popp, Ilja
Preuß, Stefan Roock, Michael Ruppert, Roland Sand, Martin Schneider,
Thomas Singer, Andreas Schoolmann, Robert Wenner, Timothy Wall, and
Frank Westphal; Angelika Shafir, who succeeded in translating not only the
facts but also the spirit of the original text; Tim Cox and Stacie Pierce of
Morgan Kaufmann Publishers, who value quality much higher than publi-
cation speed; Peter Fröhlich, co-author of the German version, who perse-
vered through our discussions about language and style; all the people
forming andrena objects, a more than suitable place to develop new ideas
and to confront these ideas with reality; and Bettina and Jannek, who will
hopefully help me fill many pages of our shared personal “book” with hap-
piness and sadness.




