

Unit Testing in Java

Johannes Link

With Contributions by Peter Fröhlich

Unit Testing in Java

How Tests Drive the Code

Johannes Link

With Contributions by Peter Fröhlich

Senior Editor Tim Cox
Publishing Services Manager Edward Wade
Editorial Coordinator Stacie Pierce, Richard Camp
English translation Angelika Shafir
Project Management Matrix Productions, Inc.
Cover Design Frances Baca
Cover Image Photodisc Collection/Getty Images
Text Design Rebecca Evans
Composition Nancy Logan
Illustration Dartmouth Publishing, Inc.
Copy Editor Yoni Overton
Proofreader Dan Young
Indexer Edwin Durbin
Interior printer The Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color Corporation

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan Kaufmann
Publishers is aware of a claim, the product names appear in initial capital or all
capital letters. Readers, however, should contact the appropriate companies for
more complete information regarding trademarks and registration.

Morgan Kaufmann Publishers
An Imprint of Elsevier Science
340 Pine Street, Sixth Floor
San Francisco, CA 94104-3205

www.mkp.com

© 2002 by dpunkt.verlag GmbH, Heidelberg, Germany.
Title of German original: Unit Tests Mit Java

English translation © 2003 by Elsevier Science (USA)
All rights reserved.
Printed in the United States of America

07 06 05 04 03 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means—electronic, mechanical, photocopying,
or otherwise—without the prior written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Link, Johannes.
 Unit testing in Java : how tests drive the code / by Johannes Link ; with contribu-
 tions by Peter Fröhlich.
 p. cm.
 Includes bibliographical references and index.
 ISBN 1-55860-868-0
 1. Computer software—Testing. 2. Java (Computer program language)
 I. Fröhlich, Peter. II. Title.
 QA76.76.T48L55 2003
 005.1'4—dc21
Morgan Kaufmann ISBN: 1-55860-868-0
dPunkt ISBN: 3-89864-150-3

This book is printed on acid-free paper.

Foreword

Erich Gamma

As a professional software developer, I want to develop software as fast as
possible, as well as possible, and as stress-free as possible. Automated unit
tests help to bring me closer to this goal. They are a small investment,
which help me get confidence in the code I produce and maintain later on.
When I don’t have automated tests, I have to fall back on manual testing.
However, manual tests cannot be automatically repeated. Consequently,
the stress increases, particularly when they have to be done under time
pressure, which isn’t, of course, the exception. At the push of a button you
can determine at any given time whether or not the last change impacts
the fitness of your software. You can do this today, tomorrow, or any time in
the future, regardless of whether or not a deadline is knocking at your door.

This book by Johannes Link and contributor Peter Fröhlich is a practi-
cal introduction to using automated unit tests and the test-first approach
in your day-to-day software development. The automation framework
used in the book is JUnit. It is a small and simple framework for creating
and managing tests. However, more is needed for successful development
with unit tests. In fact, a developer has to be familiar with many different
testing techniques, in particular when unit tests have to be created in the
context of databases or distributed applications based on application serv-
ers. This book sheds light on these problems and is a highly welcome con-
tribution to the field of automated unit testing.

JUnit itself was also developed with automated unit tests and the test-
first approach, as explained in this book. In fact, the techniques were even
used under challenging conditions, such as while fighting jet lag or during

vi

�

Foreword

electric power failures in alpine cabins. Still, the techniques have proven
themselves every time. I hope that, thanks to this book, you will become
test infected and that in the future you will always be able to give a positive
answer to the classical unit test control question, “Where are the unit
tests?”

Erich Gamma

Co-author of JUnit
Technical Director, Object Technology International

Foreword

Frank Westphal

Do you remember your first programming experience? I don’t mean the
details of the computer or language used; I mean how did you feel?

I remember typing in a few statements from the programming hand-
book, eager to see the program run. It was amazing to watch how the code
sprang to life. Within a few hours I had grown the book example into what
seemed an impressive program. I had made additions here and there and
after every change I would rerun the program to see how it was doing. In
the evening I showed it to my parents. They could tell by the look in my
eyes how proud I was.

How things have changed. I enjoy programming more than ever, but
now and then I realize that some of the original fun is gone. It’s in these
moments that I reflect back on my first experience. Why can’t program-
ming always be like that?

Actually, it was in one of those moments that I came across the tech-
niques described in this book. Automated tests and continuous refactoring
applied in tandem brought me a bit closer to the beginning of my pro-
gramming career. More often than not since then, I have been able to act
like the only thing I have to do is write a few lines of code. But don’t be
fooled; these techniques are not only applicable to small programs. The
larger the scale, the more valuable these techniques became to me.

I was glad when Johannes asked me to write a second foreword for two
reasons. First, this book brings together the knowledge that a number of
pioneering extreme programmers wish they had when they started apply-
ing test-first programming five years ago. If you follow down that route,
you will invariably run into testing problems. Even though you are writing

viii

�

Foreword

your tests first, you will come to halt because you won’t see how to test
your code. That’s natural. Actually, that’s the perfect time to reflect. Or to
pick up this book and read what Johannes tells us.

Second, I was going to write a book just like this one. However, when
Johannes shared with me the first few chapters for review, I could see that it
was well written and even covering a large suite of tools to support testing
code that is usually hard, if not impossible, to test. I wish I had written this
book. Therefore, writing an accompanying foreword is a great pleasure.

There is but one danger in reading this book. You might come away
with the impression that it’s all about techniques and tools. When in fact,
it’s all about you.

Test-infected programmers will tell you how the tests changed their
relationship to the code. There is a certain fascination in seeing a few hun-
dred tests passing and checking all the innards of your software. Indeed,
sometimes you will find yourself pressing the run button a few more times,
just for the extra kick that everything’s working fine.

Frank Westphal

Independent trainer and consultant

Contents

Foreword v

Erich Gamma

Foreward vii

Frank Westphal

Preface xvii

Part

I

Basic Techniques

1.1

Important Terms 5

1.2

XP Testing 6
Communication, Simplicity, Feedback, and Courage 7
Pair Programming 7
Incremental and Iterative Development 8
Refactoring 8
Test Types in XP 9
XP or Not XP? 10

1.3

Classic Testing 11

1.4

Test-First Development—A Brief Definition 16

1.5

Java Only—Or Other Coffee? 18

1.6

Objectives of This Book 18

1.7

Organization of This Book 19

Chapter

 1

Introduction 3

x

�

Contents

1.8

Conventions in This Book 20

1.9

 Web Site to This Book 21

2.1

What Do We Want to Automate? 24

2.2

Requirements for an Automation Framework 25

2.3

JUnit 27
Installing and Running Tests 28
Creating Test Classes 30
Fixtures 34
Creating Test Suites 36

2.4

Summary 37

3.1

Step by Step 39

3.2

Dependencies 48

3.3

Organizing and Running Tests 57
Organizing Tests 57
Running Tests 62

3.4

Summary 63

4.1

Reworking Single Tests 66

4.2

Black and White Boxes 70

4.3

Testing the Typical Functionality 71

4.4

Threshold Values and Equivalence Classes 73

4.5

Error Cases and Exceptions 75

4.6

Object Interactions 81

4.7

Design by Contract 84

4.8

More Ideas to Find Test Cases 86

4.9

Refactoring Code and Tests 87

4.10

Summary 90

5.1

Statics 91

5.2

The Life Cycle of a Test Suite 93

5.3

Project-Specific Expansions 95

5.4

Summary 96

Chapter

 2

Automating Unit Tests 23

Chapter

 3

Basic Steps of the Test-First Approach 39

Chapter

 4

Test Ideas and Heuristics 65

Chapter

 5

The Inner Life of a Test Framework 91

Contents

�

xi

6.1

Little Dummies 97

6.2

Weltering in Technical Terms 100

6.3

Big Dummies 100

6.4

Extending Our Mansion 107

6.5

Endoscopic Testing 108

6.6

Mock Objects from the Assembly Line 113
Mock Library 113
Mock Generators 114
Mock Objects the Easy Way 114

6.7

Testing Threshold Values and Exceptions 116

6.8

How Does the Test Get to the Mock? 119

6.9

Evil Singletons 122

6.10

Lightweight and Heavyweight Mocks 124

6.11

File Dummies 129

6.12

More Typical Mock Objects 133

6.13

External Components 134

6.14

The Pros and Cons 137
Heuristics for the Use of Mocks 140

6.15

Summary 141

7.1

Inheritance 143
Well-Shaped Inheritance Hierarchies 143
Reusing Superclass Tests 146
Test Class Hierarchies by Refactoring 151
Testing Interfaces 152
Testing Abstract Classes 155

7.2

Polymorphism 155

7.3

Summary 160

8.1

The XP Rule 162

8.2

Clear Answers to Clear Questions 163
Tests per Class 164
Getters and Setters 164
Non-Public Object Properties 164
Complex Interaction Tests 166
Testing the Tests 167

Chapter

 6

Dummy and Mock Objects for Independence 97

Chapter

 7

Inheritance and Polymorphism 143

Chapter

 8

How Much Is Enough? 161

xii � Contents

8.3 Test Coverage 167
Specification-Based Coverage 168
Code-Based Coverage 168

8.4 Summary 170

Part II
Advanced Topics

9.1 Abstract Persistence Interface 175
9.2 Persistent Dummy 178
9.3 Designing a Database Interface 181

Transactions 182
Ad Hoc Queries 184
Object-Centered Persistence 185

9.4 Testing the “Right” Persistence 187
Approaches for Test Data Consistency 191
Speeding Up the Test Suite 192
JDBC Mocks 193
Evolution of the Persistence Technology 195

9.5 Interaction between Persistence Layer and Client 196
9.6 Summary 198

10.1 Problems Using Threads 202
Nondeterminism 203
Target Objects 203

10.2 Testing Asynchronous Services 204
Service without Result 204
Service with Result 208
Expected Exceptions in Split-Off Threads 210
Unexpected Exceptions 212

10.3 Testing for Synchronization 212
Simple Test Cases 213
Concurrent Test Cases 214
Nondeterministic Test Cases 219

10.4 Summary 222

Chapter 9 Persistent Objects 173

Chapter 10 Concurrent Programs 201

Contents � xiii

Distribution Mechanisms in Java 226
11.1 RMI 227

The Server 227
The Client 232
Summary of RMI 235

11.2 Enterprise JavaBeans 236
Just a Facade 237
Testing Inside the Container 238
EJBs and Simple Design 239

11.3 Summary 240

12.1 Functional Tests 242
12.2 Testing on the Server 247
12.3 Testing with Dummies 250
12.4 Separating the Servlet API from the Servlet Logic 256
12.5 Testing the HTML Generation 259

Java Server Pages 260
JSP Custom Tags 260
Struts 261

12.6 Summary 261

13.1 The Direct Way 263
Brief Summary 283
Keeping the GUI Clear 285

13.2 Short Detours 286
JFCUnit 287
The AWT Robot 289
Other Tools 290

13.3 Summary 290

14.1 Activities in the Defined Software Process 292
Activities and Products 292
Construction Activities 294
Verification 295

Chapter 11 Distributed Applications 225

Chapter 12 Web Applications 241

Chapter 13 Graphical User Interfaces 263

Chapter 14 The Role of Unit Tests in the Software Process 291

xiv � Contents

Validation 296
Quality Assurance 297

14.2 Process Types and Testing Strategies 299
Sequential Models 300
Incremental Models 302
Evolutionary Models 303
Continuous Integration 305

14.3 Costs and Benefits of Automated Unit Tests 305
14.4 Commercial Process Models 307

Rational Unified Process 308
Extreme Programming 311
XP versus RUP 312

14.5 Will Automated Unit Tests Fit in My Process? 312

15.1 Unit Testing for Existing Software 314
Testing around Legacy Code 316

15.2 Introducing Unit Tests to the Development Team 317
The Craftsmanship Approach 318
The Organizational Approach 318

15.3 What’s Missing? 320

Part III
Appendices

A.1 Frequently Asked Questions (FAQs) 325
How Do I Implement a Test Case for a Thrown Exception? 326
How Do I Organize My Test Case Classes? 326
How Do I Run Setup Code Once for All My Test Cases? 327
I Get a ClassNotFoundException When I Use LoadingTestRunner.

What Can I Do? 327
Why Do I Get Exception XYZ When Using a Graphical Test Runner, But Not in

the Textual Test Runner? 328
“assert” Has Been a Keyword Since JDK 1.4. Isn’t There a Conflict with JUnit’s

Assert Method? 328
How Do I Best Integrate JUnit with My Favorite Development Environment? 328

Chapter 15 Loose Ends and Opportunities 313

Appendix A Notes to JUnit 325

Contents � xv

A.2 JUnit Expansions 329
JUnitX and XPTest 329
Daedalos JUnit Extensions 329
JFCUnit 330
JUnitPP 330
Mock Objects 330
MockMaker 330
EasyMock 331
JXUnit 331
JUnitHelp 331
Joshua 331
JDepend 331
JesTer 332
HttpUnit 332
JUnitEE 332
Canoo WebTest 333
Cactus 333
JUnitPerf 333
J2ME Unit 333
Test Mentor Java Edition 334

B.1 Smalltalk 335
Creating Test Cases with SUnit 335
Differences to Java 336
Evaluation 337

B.2 C++ 338
Installation 338
Setting Up a Test Project 339
Creating Test Cases 339
Running Your Tests 340
Overall Impression 343

B.3 The Rest 343

Glossary 345

Bibliography and List of References 353
Bibliography 353
URLs 359
Further Reading 362

Extreme Programming 362

Appendix B Unit Tests with Other Programming Languages 335

Test-First and JUnit 363
Testing Object-Oriented Software 363
Miscellaneous 364

Index 365

Preface � xvii

Preface

When my German publisher told me that my book was going to be trans-
lated into English I was delighted: no work for lots of fame. This view was
more than naive. Despite the translator’s excellent job, the number of
errors and omissions uncovered by the reviewers was quite a revelation.

So I had to take the challenge and rewrite parts of a book that I had
already deemed finished and of high quality. What you hold in your hands
now is maybe 70% translation and 30% new, updated, and improved mate-
rial. And still I feel guilty for not having been able to seize all of the review-
ers’ suggestions.

As the book changed shape and went through heavy restructurings, my
life did as well. Thanks to all who supported me in one process or another.
These include the reviewers of both the German and the English versions:
Frank Adler, Achim Bangert, Markus Barchfeld, Ekard Burger, Frank
Cohen, Herbert Ehrlich, Eitan Farchi, Tammo Freese, Dierk König, Andreas
Leidig, Erik Meade, Steve Metsker, Rainer Neumann, Christian Popp, Ilja
Preuß, Stefan Roock, Michael Ruppert, Roland Sand, Martin Schneider,
Thomas Singer, Andreas Schoolmann, Robert Wenner, Timothy Wall, and
Frank Westphal; Angelika Shafir, who succeeded in translating not only the
facts but also the spirit of the original text; Tim Cox and Stacie Pierce of
Morgan Kaufmann Publishers, who value quality much higher than publi-
cation speed; Peter Fröhlich, co-author of the German version, who perse-
vered through our discussions about language and style; all the people
forming andrena objects, a more than suitable place to develop new ideas
and to confront these ideas with reality; and Bettina and Jannek, who will
hopefully help me fill many pages of our shared personal “book” with hap-
piness and sadness.

