
CHAPTER

39

Disk and File System
Analysis

 INFORMATION IN THIS CHAPTER

 • Media Analysis Concepts

 • The Sleuth Kit

 • Partitioning and Disk Layouts

 • Special Containers

 • Hashing

 • Carving

 • Forensic Imaging

 MEDIA ANALYSIS CONCEPTS
 At its most basic, forensic analysis deals with fi les on media —deleted fi les, fi les in fold-
ers, fi les in other fi les, all stored on or in some container. The goal of media analysis is to
identify, extract, and analyze these fi les and the fi le systems they lie upon. Identifi cation
includes determining which active and deleted fi les are available in a volume. Extrac-
tion is the retrieval of relevant fi le data and metadata. Analysis is the process in which
we apply our intelligence to the data set and ideally come up with meaningful results.

 Note that these are not necessarily discrete procedural steps. In fact, some exami-
nation processes will seem to straddle two or more of these—carving, for example, can
easily be described as both identifi cation and extraction. Nonetheless, we feel that this
is a suitable model for describing why we as examiners are taking a particular action.

 This chapter focuses primarily on the concepts behind identifying and extracting
fi le system artifacts, and information about fi les. Deep analysis of the artifacts found
in content of the fi les and the artifacts of interest found in specifi c fi le systems will
not be covered here as this analysis makes up the bulk of Chapters 4 through 8 .

 While we discuss the fi le system analysis concepts that will be of the most use
to an examiner, a full analysis of every conceivable artifact and nuance of each
fi le system is outside the scope of this book. For greater detail on this topic, the
authors highly recommend File System Forensic Analysis by Brian Carrier [1] ,
the authoritative work on the subject.

3

40 CHAPTER 3 Disk and File System Analysis

 File System Abstraction Model
 In the aforementioned File System Forensic Analysis , the author puts forth a fi le sys-
tem abstraction model to be used when describing the functions of fi le systems and
the artifacts generated by these functions. For readers with networking backgrounds,
this model is not unlike the OSI model used to describe communications systems.

 As described by Carrier, the logical progression of any fi le system, from low level
to high level, is:

 • Disk
 A disk refers to a physical storage device—a SCSI or SATA hard drive, or a Secure
Digital Card from a digital camera, for example. Analysis of items at this level is
usually beyond the capabilities of most examiners—physical media analysis of
conventional hard drives requires extensive specialized training and knowledge,
access to a clean room, and expensive electron microscopy equipment. With the
rise of fl ash media and Solid State Disks, however, analysis of media at this level
may be in the realm of possibility for a larger pool of examiners.

 • Volume
 A volume is created using all or part of one or more disks. A single disk may
contain several volumes, or a volume may span several disks, depending on
confi guration. The term “partition” is often used interchangeably for a vol-
ume; Carrier makes a distinction wherein a “partition” is limited to a single
physical disk, and a volume is a collection of one or more partitions. Put
simply, a volume describes a number of sectors on a disk(s) in a given system.
Please see Figure 3.1 for a simplifi ed display of the delineation between a disk
and volumes present on the disk.

 • File System
 A fi le system is laid down on a volume and describes the layout of fi les and
their associated metadata. Items in the fi le system layer include metadata spe-
cifi c to and solely used for the fi le system’s operation—the Ext2 superblock
is a good example.

 FIGURE 3.1

 Disk and volumes.

41The Sleuth Kit

 • Data Unit
 A data unit is the smallest available freestanding unit of data storage avail-
able in a given fi le system. On Unix-derived fi le systems these are known
as blocks . These are generally some power of 2 multiple of the physical
sector size of the disk. Historically the sector size of every disk was 512
bytes—most modern fi le systems will use 4096 bytes (4K) or larger as the
smallest addressable data unit . The information available at the data unit
layer is simple: the content of that data unit. If that data unit is allocated to
a JPEG image, the data unit will contain a portion of JPEG data. If the data
unit was allocated to a text fi le, the data unit will contain text.

 • Metadata
 Metadata refers to data about data . Given that the data unit layer holds data
in a fi le system, the metadata layer then contains data about the data units. On
Unix-derived fi le systems these metadata units are called inodes . The exact
content of metadata units depends on the actual fi le system being discussed,
but generally this layer will at least consist of fi le time stamps, fi le ownership
information, and data units allocated to this metadata unit. We’ll discuss the
specifi c artifacts for each fi le system in the relevant sections later.

 • File Name
 The fi le name layer is where humans operate. Unsurprisingly, this layer con-
sists of fi le and folder/directory names. Once again, artifacts available in this
layer vary depending on the fi le system. At the very least, fi le names have a
pointer to their corresponding metadata structure.

 Because this abstraction model is built with the design of Unix-derived fi le sys-
tems in mind, some of the separations do not map directly to the designs of fi le sys-
tems for other platforms. However, a good understanding of this model is imperative
to truly understanding the signifi cance of fi le system artifacts on any fi le system.

 THE SLEUTH KIT
 To process fi le system artifacts, we will use The Sleuth Kit (www.sleuthkit.org). The
Sleuth Kit (TSK) is the suite of fi le system forensic tools originally created by Brian
Carrier as an updated version of the older Coroner’s Toolkit . The Coroner’s Toolkit
(TCT) was designed specifi cally to perform forensic analysis of compromised Unix-
like systems. While being a very powerful set of early forensic tools, TCT had major
shortcomings, including a lack of portability between systems and a lack of support
for non Unix-like fi le systems. Carrier developed the Sleuth Kit to provide a highly
portable, extensible, and useful open source forensics toolkit.

 Installing the Sleuth Kit
 The Sleuth Kit natively supports processing raw disk images (split or not), but it can
also import the ability to process additional image formats from the LibEWF and

42 CHAPTER 3 Disk and File System Analysis

AFFLib packages installed in Chapter 2 . Note that we could install precompiled
Sleuth Kit packages using the Ubuntu package manager. Retrieving the source code
directly and compiling ourselves minimizes the number of intermediaries involved in
producing executable code. It also ensures that we have the latest version of our core
tools and libraries, as package repositories may take some time to update.

 Note that when executing the Sleuth Kit’s confi gure script (./confi gure), you
should see the following lines toward the end of the script’s output:

 checking affl ib/affl ib.h usability... yes
 checking affl ib/affl ib.h presence... yes
 checking for affl ib/affl ib.h... yes
 checking for af_open in -laffl ib... yes
 checking libewf.h usability... yes
 checking libewf.h presence... yes
 checking for libewf.h... yes
 checking for libewf_open in -lewf... yes
 confi gure: creating ./confi g.status

 This confi rms that LibEWF and AFFLib are installed properly and will be used by
the Sleuth Kit.

 With these development libraries installed, and the Sleuth Kit confi gured, fi nish-
ing the build and install is a simple matter executing make followed by sudo make
install . This will install the suite of command-line tools that make up the Sleuth Kit.

 Sleuth Kit Tools
 Mastering 21 separate command line utilities may seem daunting if you are not used
to operating via command prompt frequently. That said, the bulk of Sleuth Kit tools
are named in a logical manner, which indicates the fi le system layer they operate
upon and the type of output you should expect from them. Since the Sleuth Kit comes
from a Unix-derived pedigree, this naming is quite clear if you are familiar with the
Linux command line.

 The common prefi xes found in the Sleuth Kit tools that indicate the fi le system
layer of the tool are:

 • “mm-”: tools that operate on volumes (aka “media management”)
 • “fs-”: tools that operate on fi le system structures
 • “blk-”: tools that operate at the data unit (or “block”) layer
 • “i-”: tools that operate at the metadata (or “inode”) layer
 • “f-”: tools that operate at the fi le name layer

 WARNING
 Got Root?
 If you plan to use Sleuth Kit tools with an attached disk as the target (as opposed to an
image fi le) remember that you will need root privileges. This can be accomplished either
by becoming root via the “su-” command or by executing the command with root privileges
using the “sudo” command, as shown in Chapter 2 .

43The Sleuth Kit

 There are two additional layers that don’t map directly into the fi le system model as
described:

 • “j-”: tools that operate against fi le system journals
 • “img-”: tools that operate against image fi les

 Common suffi xes found in Sleuth Kit tools that indicate the expected function of the
tool are:

 • “-stat”: displays general information about the queried item—similar to the
“stat” command on Unix-like systems

 • “-ls”: lists the contents of the queried layer, such as the “ls” command on
 Unix-like systems

 • “-cat”: dumps/extracts the content of the queried layer, such as the “cat”
 command on Unix-like systems

 Additionally, a handful of tools provided by the Sleuth Kit don’t follow this naming
scheme. These are described under the “Miscellaneous Tools” section.

 To demonstrate use of the Sleuth Kit, we will proceed through each layer, describ-
ing each tool present in that layer. Additionally, we will examine the use and output of
the most important tools using a Linux Ext3 fi le system as our demonstration target.

 Volume Layer Tools
 The mmstat command will display the type of volume system in use on the target
image fi le or disk.

 The mmls command parses and displays the media management structures on the
image fi le or disk (i.e., the partition table). Note that unlike the fdisk command,
 mmls will clearly show nonallocated spaces before, after, or between volumes.

 Here we have an example image from Digital Forensics Tool Testing archive.

 NOTE
 Sleuth Kit Disk Layer Tools
 Current versions of the Sleuth Kit do not provide any tools for operating at the disk layer.
Because the Sleuth Kit is a fi le system forensic analysis framework, this should not be
surprising. That said, versions of the Sleuth Kit prior to 3.1.0 did include two tools at this
layer that you may encounter in older forensic live CD distributions.

 The disk_stat tool will show if the disk has a Host Protected Area (HPA) present. A HPA
is one method that can be used to artifi cially restrict the number of sectors addressable by the
operating system accessing a hard drive.

 The disk_sreset will allow you to temporarily remove an HPA from a disk. This is
a nonpermanent change—the HPA will return the next time the disk is powered on.
Temporarily removing the HPA using disk_sreset enables a subsequent image capture
operation to grab the entire disk, including the protected area.

 Another method for restricting the displayed number of sectors is via Device Confi guration
Overlay . Both this and HPA can be detected and removed using the hdparm utility, which is
included by default on most Linux distributions.

 Other non-Sleuth Kit tools that operate at the disk layer include all of the imaging tools
discussed in the Forensic Imaging section later in the chapter.

44 CHAPTER 3 Disk and File System Analysis

 user@forensics:~$ mmls 10-ntfs-disk.dd
 DOS Partition Table
 Offset Sector: 0
 Units are in 512-byte sectors
 Slot Start End Length Description
 00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
 01: ----- 0000000000 0000000062 0000000063 Unallocated
 02: 00:00 0000000063 0000096389 0000096327 NTFS (0x07)
 03: 00:01 0000096390 0000192779 0000096390 NTFS (0x07)
 04: ----- 0000192780 0000192783 0000000004 Unallocated

 We can see here that the primary partition table was found in the fi rst sector of the
disk and that there are two volumes present—the fi rst from sector 63 through sector
96389 and the second from sector 96390 through sector 192779. The mmls output
also makes it clear that there are four “extra” sectors after the end of the last volume
in addition to the standard 63 sector gap before the fi rst volume.

 Another important benefi t of using mmls instead of a tool such as fdisk is that the
offsets to individual volumes are presented as counts of 512-byte sectors. These offsets
can be passed directly to higher level Sleuth Kit tools to specify a volume to analyze.

 The mmcat streams the content of the specifi ed volume to STDOUT (usually the
console). This can be used to extract a specifi c volume of interest for analysis using
tools that may not be able to operate on the container format or disk directly.

 File System Layer Tools
 The fsstat command displays fi le system information. Data of particular interest
in the output of this command vary depending on the fi le system being examined but
may include volume names, data unit sizes, and statistical information about the state
of the fi le system. We will use output from an Ext3 fi le system to present the tool.
Analysis of Ext3-specifi c information is covered in detail in Chapter 5 .

 user@forensics:~$ fsstat ubnist1.casper-rw.gen3.aff
 FILE SYSTEM INFORMATION
 --
 File System Type: Ext3
 Volume Name:
 Volume ID: 9935811771d9768b49417b0b3b881787
 Last Written at: Tue Jan 6 10:59:33 2009
 Last Checked at: Sun Dec 28 12:37:56 2008
 Last Mounted at: Tue Jan 6 10:59:33 2009
 Unmounted properly
 Last mounted on:
 Source OS: Linux
 Dynamic Structure
 Compat Features: Journal, Ext Attributes, Resize Inode, Dir Index
 InCompat Features: Filetype, Needs Recovery,
 Read Only Compat Features: Sparse Super, Has Large Files,
 Journal ID: 00
 Journal Inode: 8

45The Sleuth Kit

 As you can see from the partial tool output just given, the fsstat tool provides
some basic fi le system information, including some information that may be of key
investigative value, such as the last written and last mounted information. After this
general information, the output of fsstat will be highly fi le system dependent. In
the case of Ext3, statistical and layout information is provided about metadata and
content structures present on the disk:

 METADATA INFORMATION

 Inode Range: 1 - 38401
 Root Directory: 2
 Free Inodes: 36976
 Orphan Inodes: 35, 20, 17, 16,
 CONTENT INFORMATION

 Block Range: 0 - 153599
 Block Size: 4096
 Free Blocks: 85287
 ...

 Note that this tool provides the block size used on the fi le system. This is important
information when carving data from unallocated space.

 Data Unit Layer Tools
 The blkstat command displays information about a specifi c data unit. Generally,
this will simply be allocation status; however, on Ext fi le systems, the block group to
which the block is allocated is also displayed.

 user@forensics:~$ blkstat ubnist1.casper-rw.gen3.aff 521
 Fragment: 521
 Allocated
 Group: 0

 The blkls command lists details about data units. Blkls can also be used to
extract all unallocated space of the fi le system. This is useful to do prior to attempt-
ing to carve data from a fi le system. The following example extracts all of the unal-
located space from our sample image fi le into a single, fl at fi le.

 user@forensics:~$ blkls ubnist1.casper-rw.gen3.aff > ubnist1.
casper-rw.gen3.unalloc

 user@forensics:~$ ls -lath ubnist1.casper-rw.gen3.unalloc
 -rw-r----- 1 cory eng 331M Sep 2 20:36 ubnist1.casper-rw.gen3.

unalloc

 The blkcat command will stream the content of a given data unit to STD-
OUT. This is similar in effect to using dd to read and write a specifi c block. The
next example uses blkcat to extract block 521, which we view courtesy of the
 xxd binary data viewer, which is included with the vim editor package on most
distributions.

46 CHAPTER 3 Disk and File System Analysis

 user@forensics:~$ blkcat ubnist1.casper-rw.gen3.aff 521 | xxd |
head

 0000000: 0200 0000 0c00 0102 2e00 0000 0200 0000
 0000010: 0c00 0202 2e2e 0000 0b00 0000 1400 0a02
 0000020: 6c6f 7374 2b66 6f75 6e64 0000 0c00 0000 lost+found.....
 0000030: 1400 0c01 2e77 682e 2e77 682e 6175 6673wh..wh.aufs
 0000040: 011e 0000 1400 0c02 2e77 682e 2e77 682ewh..wh.
 0000050: 706c 6e6b 015a 0000 1400 0c02 2e77 682e plnk.Z......wh.
 0000060: 2e77 682e 2e74 6d70 021e 0000 0c00 0402 .wh..tmp.......
 0000070: 726f 6673 025a 0000 0c00 0302 6574 6300 rofs.Z.....etc.
 0000080: 045a 0000 1000 0502 6364 726f 6d00 0000 .Z...cdrom......
 0000090: 031e 0000 0c00 0302 7661 7200 013c 0000var..<..

 The blkcalc command is used in conjunction with the unallocated space
extracted using blkls . With blkcalc , we can map a block from blkls output back
into the original image. This is useful when we locate a string or other item of interest
in the blkls extract and want to locate the location of the item in our forensic image.

 Metadata Layer Tools
 The istat command displays information about a specifi c metadata structure. In
general, any of the information listed as being contained in a metadata structure
(ownership, time information, block allocations, etc.) will be displayed. As always,
the exact information displayed is fi le system dependent. We will explore fi le
 system-specifi c information in subsequent chapters.

 What follows is the istat output for inode 20 on our test Ext3 fi le system. Out-
put common to other fi le systems includes allocation status, ownership information,
size, and time stamp data. Addresses of the inode’s data units will also be present
but are handled in different manners by different fi le systems, as shown later.

 user@forensics:~$ istat ubnist1.casper-rw.gen3.aff 20
 inode: 20
 Allocated
 Group: 0
 Generation Id: 96054594
 uid / gid: 0 / 0
 mode: rrw-r--r--
 size: 123600
 num of links: 0
 Inode Times:
 Accessed: Tue Jan 6 10:59:33 2009
 File Modifi ed: Wed Jan 7 07:59:47 2009
 Inode Modifi ed: Wed Jan 7 07:59:47 2009
 Deleted: Wed Dec 31 16:00:17 1969
 Direct Blocks:
 28680 0 0 0 0 0 0 28681
 0 0 0 0 0 0 0 28683
 0 0 0 0 0 0 28684 0
 0 0 0 0 0 0 28685
 Indirect Blocks:
 28682

47The Sleuth Kit

 The ils command lists the metadata structures, parsing and displaying the
embedded dates, ownership information, and other relevant information. This is one
of the commands that can be used to generate a bodyfi le for timeline generation using
the mactime command (see “Miscellaneous Tools”). Timelines are key to the inves-
tigations presented in Chapter 9 .

 As you can see from the argument list, the examiner can tune the ils output to
view as much (or as little) data as necessary.

 user@forensics:~$ ils
 Missing image name
 usage: ils [-emOpvV] [-aAlLzZ] [-f fstype] [-i imgtype] [-b

dev_sector_size] [-o imgoffset] [-s seconds] image [images]
[inum[-end]]

 -e: Display all inodes
 -m: Display output in the mactime format
 -O: Display inodes that are unallocated, but were sill open

(UFS/ExtX only)
 -p: Display orphan inodes (unallocated with no fi le name)
 -s seconds: Time skew of original machine (in seconds)
 -a: Allocated inodes
 -A: Unallocated inodes
 -l: Linked inodes
 -L: Unlinked inodes
 -z: Unused inodes (ctime is 0)
 -Z: Used inodes (ctime is not 0)
 -i imgtype: The format of the image fi le (use '-i list' for

supported types)
 -b dev_sector_size: The size (in bytes) of the device

sectors
 -f fstype: File system type (use '-f list' for supported

types)
 -o imgoffset: The offset of the fi le system in the image

(in sectors)
 -v: verbose output to stderr
 -V: Display version number

 For example, if we wanted to list all inodes that are allocated or that have been used
at some point, we can do so with the -a and -Z fl ags:

 user@forensics:~$ ils -aZ ubnist1.casper-rw.gen3.aff
 ...
 st_ino|st_alloc|st_uid|st_gid|st_mtime|st_atime|st_ctime|st_

crtime|st_mode|st_nlink|st_size
 1|a|0|0|1230496676|1230496676|1230496676|0|0|0|0
 2|a|0|0|1231268373|1230496676|1231268373|0|755|15|4096
 7|a|0|0|1230496676|1230496676|1230496676|0|600|1|4299210752
 8|a|0|0|1230496679|0|1230496679|0|600|1|16777216
 11|a|0|0|1230496676|1230496676|1230496676|0|700|2|16384
 12|a|0|0|1230469846|1230469846|1231311252|0|444|19|0
 13|a|0|0|1230615881|1225321841|1230615881|0|755|9|4096
 ...

48 CHAPTER 3 Disk and File System Analysis

 The icat command streams the data unit referenced by the specifi ed meta data
address. For example, if “fi le1.txt” points to inode 20, which then points to blocks 30,
31, and 32, the command “ icat {image_ fi le} 20” would produce the same output
that “ cat fi le1.txt” would from the mounted fi le system.

 The ifi nd command fi nds the metadata structure referenced by the provided fi le
name or the metadata structure that references the provided data unit address. For
example, to fi nd the inode that owns block 28680, we can do the following:

 user@forensics:~$ ifi nd -d 28680 ubnist1.casper-rw.gen3.aff
 20

 File Name Layer Tools
 The fl s command lists fi le names (deleted and allocated). By default it does not
traverse the entire fi le system so you will only see the root directory of the volume
being examined. This is one of the commands we can use to generate a bodyfi le
for timeline generation using the mactime command (see “Miscellaneous Tools”).
A simple “ fl s image ” will produce a terse directory listing of the root directory of
the fi le system.

 user@forensics:~$ fl s ubnist1.casper-rw.gen3.aff
 d/d 11: lost+found
 r/r 12: .wh..wh.aufs
 d/d 7681: .wh..wh.plnk
 d/d 23041: .wh..wh..tmp
 d/d 7682: rofs
 d/d 23042: etc
 d/d 23044: cdrom
 d/d 7683: var
 d/d 15361: home
 d/d 30721: tmp
 d/d 30722: lib
 d/d 15377: usr
 d/d 7712: sbin
 d/d 13: root
 r/r * 35(realloc): .aufs.xino
 d/d 38401: $OrphanFiles

 Note that the “.aufs.xino” fi le is listed with an asterisk—this indicates that it is
deleted. The (realloc) indicates that the inode the name references has been real-
located to another fi le.

 The fl s man page provides more background into the various options that can
be passed to the command. For interactive use, particularly important fl s arguments
include:

 -d: Display deleted entries only
 -l: Display long version (like ls -l)
 -m: Display output in mactime input format with
 dir/ as the actual mount point of the image

49The Sleuth Kit

 -p: Display full path for each fi le
 -r: Recurse on directory entries
 -u: Display undeleted entries only
 -z: Time zone of original machine (i.e. EST5EDT or GMT)

(only useful with -l)
 -s seconds: Time skew of original machine (in seconds)

(only useful with -l & -m)

 Note that the time zone argument does not apply if you are using -m to create a
 mactime input fi le. This is only used when displaying time information to the
 console.

 The ffi nd command fi nds fi le names that reference the provided metadata num-
ber. Using inode 20, which we located via the ifi nd command, we can discover the
name associated with this inode.

 user@forensics:~$ ffi nd ubnist1.casper-rw.gen3.aff 20
 File name not found for inode

 Unfortunately, no name currently points to this inode—it is orphaned . Just to sate our
curiosity, we can check the adjacent inodes.

 user@forensics:~$ ffi nd ubnist1.casper-rw.gen3.aff 19
 /root/.pulse-cookie
 user@forensics:~$ ffi nd ubnist1.casper-rw.gen3.aff 21
 /root/.synaptic/lock

 Miscellaneous Tools
 The mactime command generates a timeline based on processing the bodyfi le pro-
duced by ils and/or fl s . To generate a timeline using the Sleuth Kit, fi rst we need
to generate the bodyfi le . This is simply a specifi cally ordered pipe-delimited text fi le
used as the input fi le for the mactime command.

 user@forensics:~$ ils -em ubnist1.casper-rw.gen3.aff > ubnist1.
bodyfi le

 user@forensics:~$ fl s -r -m "/" ubnist1.casper-rw.gen3.aff >>
ubnist1.bodyfi le

 This produces a text fi le with the metadata information of each fi le or inode on a
single line.

 md5|fi le|st_ino|st_ls|st_uid|st_gid|st_size|st_atime|st_mtime|st_
ctime|st_crtime

 0|<ubnist1.casper-rw.gen3.aff-alive-1>|1|-/----------
|0|0|0|1230496676|1230496676|1230496676|0

 0|<ubnist1.casper-rw.gen3.aff-alive-2>|2|-/drwxr-
xr-x|0|0|4096|1230496676|1231268373|1231268373|0

 0|<ubnist1.casper-rw.gen3.aff-alive-3>
|3|-/----------|0|0|0|0|0|0|0

 0|<ubnist1.casper-rw.gen3.aff-alive-4>
|4|-/----------|0|0|0|0|0|0|0

50 CHAPTER 3 Disk and File System Analysis

 0|<ubnist1.casper-rw.gen3.aff-alive-5>
|5|-/----------|0|0|0|0|0|0|0

 0|<ubnist1.casper-rw.gen3.aff-alive-6>
|6|-/----------|0|0|0|0|0|0|0

 0|<ubnist1.casper-rw.gen3.aff-alive-7>|7|-/rrw-------
|0|0|4299210752|1230496676|1230496676|1230496676|0

 ...
 0|/lost+found|11|d/drwx------

|0|0|16384|1230496676|1230496676|1230496676|0
 0|/.wh..wh.aufs|12|r/rr--r-

-r--|0|0|0|1230469846|1230469846|1231311252|0
 0|/.wh..wh.plnk|7681|d/drwx------

|0|0|4096|1230469846|1230469897|1230469897|0
 0|/.wh..wh.plnk/1162.7709|7709|r/rrw-r-

-r--|0|0|186|1225322232|1225322232|1230469866|0

 When generating a timeline for an actual investigation we will want to set the
time zone that data originated in and possibly some additional fi le system-specifi c
information. However, to generate a simple comma-separated timeline, we can issue
the following command:

 user@forensics:~$ mactime -b ubnist1.bodyfi le -d > ubnist1.timeline.csv

 Timeline analysis is quite useful when performed properly. We will discuss timeline
analysis in Chapter 9 .

 The sigfi nd command is used to search a source fi le for a binary value at given
offsets. Given a sequence of hexadecimal bytes, sigfi nd will search through a stream
and output the offsets where matching sequences are found. Sigfi nd can be sector or
block aligned, which can be of value when searching through semistructured data such
as memory dumps or extracted unallocated space. This is useful for locating fi les based
on header information while minimizing noisy false positives that may occur when
simply searching through a data stream using something like the grep command.

 Using the sigfi nd tool is quite simple.

 -sigfi nd [-b bsize] [-o offset] [-t template] [-lV] [hex_
signature] fi le

 -b bsize: Give block size (default 512)
 -o offset: Give offset into block where signature

should exist (default 0)
 -l: Signature will be little endian in image
 -V: Version
 -t template: The name of a data structure template:
 dospart, ext2, ext3, fat, hfs, hfs+, ntfs, ufs1, ufs2

 As an example, we can use sigfi nd to locate (at least portions of) PDF fi les on
our test Ext3 image. PDF documents begin with the characters “%PDF.” Converting
these ASCII characters to their hex equivalent gives us “25 50 44 46.” Using sigfi nd ,
we look for this at the start of every cluster boundary (which was discovered earlier
using the fsstat tool).

51The Sleuth Kit

 user@forensics:~$ sigfi nd -b 4096 25504446 ubnist1.casper-rw.gen3.aff
 Block size: 4096 Offset: 0 Signature: 25504446
 Block: 722 (-)
 Block: 1488 (+766)
 Block: 1541 (+53)
 Block: 1870 (+329)
 Block: 82913 (+81043)
 ...

 The output of the tool provides the offset in blocks into the image where the hit
signature matched and in parentheses provides the offset from the previous match.
 Sigfi nd also has a number of data structure templates included, which makes identi-
fying lost partitions or fi le system structures simple.

 The hfi nd command is used to query hash databases in a much faster manner than
grepping through fl at text fi les.

 The sorter command extracts and sorts fi les based on their fi le type as deter-
mined by analysis of the fi le’s content. It can also look up hashes of extracted fi les
and perform fi le extension verifi cation.

 Finally, the srch_strings command is simply a standalone version of the
 strings command found in the GNU binutils package. This tool is included to ensure
that the Sleuth Kit has string extraction capability without requiring that the full
 binutils package be installed on systems where it is not normally present.

 Image File Tools
 We can think of the image fi le as a new intermediary layer that replaces the disk layer
in our fi le system stack. Because this layer is created by an examiner, we generally
don’t expect to fi nd any forensically interesting items here. However, depending on
the forensic format, relevant information may be available.

 The img_stat command will display information about the image format,
including any hash information and other case-relevant metadata contained in the
image. This tool is generally only useful when executed against forensic image con-
tainer types. Here is the img_stat information from our Ext3 test image:

 user@forensics:~$ img_stat ubnist1.casper-rw.gen3.aff
 IMAGE FILE INFORMATION
 --
 Image Type: AFF
 Size in bytes: 629145600
 MD5: 717f6be298748ee7d6ce3e4b9ed63459
 SHA1: 61bcd153fc91e680791aa39455688eab946c4b7
 Creator: afconvert
 Image GID: 25817565F05DFD8CAEC5CFC6B1FAB45
 Acquisition Date: 2009-01-28 20:39:30
 AFFLib Version: "3.3.5"

 The img_cat command will stream the content of an image fi le to STDOUT. This is
a convenient way to convert a forensic container into a “raw” image.

52 CHAPTER 3 Disk and File System Analysis

 Journal Tools
 Many modern fi le systems support journaling . To grossly simplify, journaling fi le
systems keep a journal of changes they are preparing to make and then they make
the changes. Should the system lose power in the middle of a change, the journal
is used to replay those changes to ensure fi le system consistency. Given this, it is
possible that the journal may contain data not found anywhere else in the active fi le
system.

 The jls command lists items in the fi le system journal, and the jcat com-
mand streams the content of the requested journal block to STDOUT. As the
information provided by these tools is highly fi le system specifi c, we will dis-
cuss the use of both of them in the relevant fi le system sections in the following
chapters.

 PARTITIONING AND DISK LAYOUTS
 The two primary partitioning schemes in use today are the “Master Boot Record
(MBR)” and the “GUID Partition Table (GPT).” The GPT scheme was devel-
oped as a replacement for the aging MBR scheme. The MBR partitioning method
originally only allowed for four primary partitions and disks of up to 2 Terabytes,
a size that is quite possible to exceed nowadays. The GPT format supports disks
up to 8 Zettabytes in size and 128 primary partitions, along with many more
improvements. The partition table is not likely to contain any information of
relevance to most investigations. Forensic analysis of the partition table is usu-
ally limited to recovery of volumes when the partitioning structures are missing
or corrupted.

 Partition Identifi cation and Recovery
 Identifi cation of deleted or otherwise missing partitions can be performed using the
 sigfi nd tool mentioned earlier. The tool includes a number of predefi ned data struc-
ture templates that will locate the tell-tale marks of a partition table or fi le system
header. We can test this using the 10th test image from the Digital Forensic Tool
Testing project (http://dftt.sourceforge.net/test10/index.html). The “dospart” tem-
plate looks for the hex value “55AA” in the last two bytes of each sector, a structure
common to MBR partitions.

 user@ubuntu:~/10-ntfs-autodetect$ sigfi nd -t dospart 10-ntfs-
autodetect/10-ntfs-disk.dd

 Block size: 512 Offset: 510 Signature: 55AA
 Block: 0 (-)
 Block: 63 (+63)
 Block: 96389 (+96326)
 Block: 96390 (+1)

53Partitioning and Disk Layouts

 We can compare this with mmls output for the same image:

 DOS Partition Table
 Offset Sector: 0
 Units are in 512-byte sectors
 Slot Start End Length Description
 00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
 01: ----- 0000000000 0000000062 0000000063 Unallocated
 02: 00:00 0000000063 0000096389 0000096327 NTFS (0x07)
 03: 00:01 0000096390 0000192779 0000096390 NTFS (0x07)
 04: ----- 0000192780 0000192783 0000000004 Unallocated

 We can see that sigfi nd located the 0x55AA signature in the boot sector (0), the
beginning and end of the fi rst volume (63 and 96389), and the beginning of the next
volume (96390).

 Additionally, the TestDisk tool from CGSecurity can be used to recover parti-
tions in the case of disk corruption or intentional spoiling. TestDisk can operate
on both raw and Expert Witness/E01 format fi les used by EnCase. An excellent
tutorial on the use of TestDisk is provided at the CGSecurity site [2] . Testdisk
can be installed on Ubuntu via apt-get . The source code and precompiled binaries
for DOS, Windows, OS X, and Linux are also available from the CGSecurity site
(www.cgsecurity.org).

 Redundant Array of Inexpensive Disks
 Redundant Array of Inexpensive Disks (RAID) is designed as a means to take mul-
tiple physical disks and address them as a single logical unit.

 The most commonly used basic RAID levels are:

 • RAID 0 refers to a setup of at least two disks that are “striped” at a block level.
Given two disks (0 and 1), block A will be written to disk 0, block B will be writ-
ten to disk 1, and so on. This increases write speeds and does not sacrifi ce any
storage space, but increases the fragility of data, as losing a single drive means
losing half of your blocks.

 • RAID 1 is the opposite of RAID 0—blocks are mirrored across pairs of drives.
This increases read speeds and reliability, but reduces the amount of available
storage to half of the physical disk space.

 NOTE
 Other Media Management Schemes
 The Sleuth Kit is able to recognize two other volume layer layouts: Sun slices (used by Solaris)
and BSD disklabels (used by BSD-based operating systems). We don’t cover analysis of either
platform in this book, but should you need to, you can use the Sleuth Kit on these volumes
as well.

54 CHAPTER 3 Disk and File System Analysis

 • RAID 5 requires at least three disks and performs striping across multiple disks
in addition to creating parity blocks . These blocks are also striped across disks
and are used to recreate data in the event a drive is lost.

 Additionally, there are “nested” or “hybrid” RAID setups that combine two of these
RAID levels in sequence. For example, a RAID 50 or 5+0 set would be a pair of
RAID5 sets that are subsequently striped.

 The Sleuth Kit has no built-in capability for dealing with RAID. The PyFLAG
suite discussed in Chapter 9 includes a command line python utility called raid_
guess.py that can be used to reconstruct a RAID map when given a set of disk
images [3] . That said, the authors recommend using the original hardware the
RAID is housed in to perform imaging whenever possible. There are many differ-
ent RAID implementations in use, and recreating the logical structure after the fact
can be perilous.

 SPECIAL CONTAINERS
 In addition to fi le systems in volumes on physical media, you may have to deal
with fi le systems in other containers. One example is the Macintosh-specifi c DMG
container discussed in the previous section. The other two major containers you are
likely to encounter are Virtual Machine Disk Images and Forensic Containers .

 Virtual Machine Disk Images
 Virtualization applications such as VMWare, VirtualBox, Virtual PC, and QEMU
allow users to run a full “virtual machine” within the host operating system. Generally,
they store the fi le systems used by these virtual machines as virtual disk images—
container fi les that act as a “disk” for purposes of virtualization software. If it acts like
a disk for virtualization software, we should be able to get it to act as a disk for pur-
poses of extracting artifacts. The most common virtual disk format today is VMDK ,
used by VMWare’s virtualization products.

 A VMWare virtual disk is defi ned using a descriptor fi le that defi nes the fi le(s)
that makes up that particular virtual disk, as well as specifi cations of the “disk” being
presented to the virtual machine. A disk is originally formed from the base fi le (or
fi les in the case where the disk is created as a series of 2-GB split chunks). As users
create snapshots of a virtual machine, fi les containing changes from the base image
called delta links are created, and a new descriptor fi le containing information about
the base and delta fi les is created.

 The full VMDK specifi cation is available from VMWare at http://www.vmware
.com/app/vmdk/?src=vmdk .

 AFFLib supports VMDK containers natively, and Sleuth Kit will import this func-
tionality if built with AFF support. We can use any of the sleuth kit tools directly
against a VMDK by specifying the “affl ib” parameter to the image type argument (-i).

55Special Containers

 Forensic Containers
 We have already spent a little time working with forensic containers, but we have
not gone into detail about what exactly they are. In general, container formats geared
toward forensic imaging have some functionality above and beyond what we get with
a raw disk image. This can include things such as internal consistency checking, case
information management, compression, and encryption. We can, of course, perform
any of these tasks with a raw image as well. The difference is for a forensic container
format, these functions are built into the format, reducing the administrative over-
head involved with things such as ensuring that the hash and case notes for a given
image are kept with that image at all times.

 EWF/E01
 The most commonly used forensic container format is the Expert Witness Format
(EWF), sometimes referred to as the “E01” format after its default extension. This
native format is used by Guidance Software’s EnCase forensic suite. This “format”
has changed somewhat from one release of EnCase to the next and is not an open
standard. That said, the LibEWF library supports all modern variants of image fi les
generated by EnCase in this format.

 TIP
 Creating VMDKs from Raw Images
 In some circumstances it is useful to be able to access a raw image in a virtual machine.
Two projects are available that provide just this functionality. LiveView (http://liveview
.sourceforge.net/) is a graphical application targeted for use on Windows with limited Linux
support that will create all the fi les needed to generate a VMWare-bootable virtual machine.

 Raw2VMDK (http://segfault.gr/projects/lang/en/projects_id/16/secid/28/) is a command
line utility that simply generates a valid VMDK fi le that points to your existing raw image.
You can then use this VMDK in any number of ways. For example, the VMDK can be added
as a secondary (read-only) disk attached to a forensics-oriented virtual machine.

 NOTE
 Other Virtual Disk Formats
 While the most common, VMWare’s VMDK is by no means the only virtual disk format in use.

 VDI is the virtual disk format used by Sun’s open source virtualization platform
VirtualBox.
 VHD is the format used by Microsoft’s Virtual PC product, as well as the “built-in” virtu-
alization capability found in Windows 7 and Server 2008.
 QCOW2 is the format used currently by the open source QEMU project.

 Should you need to do so, these disk formats can be converted into either VMDKs or
raw images suitable for forensic processing using either the qemu-img utility (part of the
QEMU package) or the vboxmanage utility from VirtualBox.

56 CHAPTER 3 Disk and File System Analysis

 The structure of this format has been documented by its original author, Andy
Rosen of ASRData, with further documentation performed by Joachim Metz during
his work on the LibEWF project [4] . The EWF format supports compression, split
fi les, and stores case metadata (including an MD5 or SHA1 hash of the acquired
image) in a header data structure found in the fi rst segment of the image fi le. Exam-
iners interested in the inner workings of the EWF format should reference these
documents.

 AFF
 The Advanced Forensics Format (AFF) is an open source format for storing disk
images for forensics, as well as any relevant metadata. AFF is implemented in the
LibAFF package we installed previously. The Sleuth Kit supports AFF image fi les
through this library. AFF images can be compressed, encrypted, and digitally signed.
An interesting feature of the AFF format is that metadata stored in the image fi le are
extensible—arbitrary information relevant to the case can be stored directly in the
image fi le in question.

 AFF images can be stored in one of three methods:

 • AFF—This is the default format of an AFF container; this is a single image fi le
containing forensic data as well as case metadata.

 • AFD—This format contains metadata in the image, but splits the image fi le into
fi xed-size volumes. This can be useful when transporting or archiving images via
size-limited fi le systems or media.

 • AFM—This format stores the image fi le as a single, solid container but stores
metadata in an external fi le.

 HASHING
 One of the key activities performed at many different points throughout an examina-
tion is generation of a cryptographic hash, or hashing. A cryptographic hash function
takes an arbitrary amount of data as input and returns a fi xed-size string as output.
The resulting value is a hash of data. Common hashing algorithms used during a
forensic examination include MD5 and SHA1. MD5 produces a 128-bit hash value,
while SHA1 produces a 160-bit hash value. Longer versions of SHA can be used
as well; these will be referred to by the bit length of the hash value they produce
(e.g., SHA256 and SHA512).

 For hash functions used in forensic functions, modifi cation of a single bit of
input data will produce a radically different hash value. Given this property, it is
easy to determine one of the core uses for hashing in forensic analysis: verifi cation
of the integrity of digital evidence. A hash generated from the original evidence
can be compared with a hash of the bit-stream image created from this evidence—
matching hashes show that these two items are the same thing. Additionally, taking
an additional hash after completing examination of a forensic copy can show that the
examiner did not alter source data at any time.

57Hashing

 Other characteristics of hash functions make them valuable for additional forensic
uses. Because a hash is calculated by processing the content of a fi le, matching
hashes across various fi les can be used to fi nd renamed fi les, or to remove “known
good” fi les from the set of data to be examined. Alternately, the hashes of fi les of
interest can be used to locate them irrespective of name changes or other metadata
manipulations.

 Many programs that implement the MD5 and SHA* algorithms are available for
a variety of platforms. For simply generating a hash of a single fi le, the md5sum or
 sha1sum programs present on nearly on Linux systems are suffi cient. Using these
programs to generate hash lists of multiple fi les or multiple nested directories of
fi les can be quite tedious. To solve this problem, Jesse Kornblum has produced the
 md5deep and hashdeep utilities.

 Md5deep is a suite of hashing utilities designed to recurse through a set of input
fi les or directories and produce hash lists for these. The output is confi gurable based
on the examiners requirements and, despite the name, the suite includes similar
tools implementing SHA* and other hashing algorithms. Hashdeep is a newer util-
ity developed as a more robust hash auditing application. It can be used to generate
multiple hashes (e.g., MD5 and SHA1 hashes) for fi les and can be used to subse-
quently audit the set of hashed data. After generating a base state, hashdeep can
report on matching fi les, missing fi les, fi les that have been moved from one location
to another, and fi les that did not appear in the original set. Full usage information
and tutorials, source code, and binaries for Windows are available at the md5deep
site [5] .

 As stated earlier, the fact that a change in a single input bit will change many
bits in the fi nal hash value is one of the valuable characteristics of hash functions for
purposes of proving a fi le’s content or integrity. If you instead want to prove that two
fi les are similar but not identical, a standard hashing approach will not help—you
will only be able to tell that two fi les are different, not how different. Jesse Korn-
blum’s ssdeep was developed to provide this capability, which Jesse calls “context
triggered piecewise hashes” “fuzzy hashing [6] .” To simplify, fuzzy hashing breaks
the input fi le into chunks, hashes those, and then uses this list to compare the similar-
ity of two fi les. The hashing window can be tuned by the end user.

 We can see the basic operation of ssdeep in the console output that follows. The
author generated a paragraph of random text and then modifi ed capitalization of the
fi rst word. The MD5 hashes are wildly different:

 MD5 (lorem1.txt) = ea4884844ddb6cdc55aa7a95d19815a2
 MD5 (lorem2.txt) = 9909552a79ed968a336ca3b9e96aca66

 We can generate fuzzy hashes for both fi les by running ssdeep with no fl ags:

 ssdeep,1.1--blocksize:hash:hash,fi lename
 24:FPYOEMR7SlPYzvH6juMtTtqULiveqrTFIoCPddBjMxiAyejao:

9YfQ7qYza6MdtiHrTKoCddBQxiwd,"/home/cory/ssdeep-test/lorem1.txt"
 24:lPYOEMR7SlPYzvH6juMtTtqULiveqrTFIoCPddBjMxiAyejao:dYfQ

7qYza6MdtiHrTKoCddBQxiwd,"/home/cory/ssdeep-test/lorem2.txt"

58 CHAPTER 3 Disk and File System Analysis

 By inspecting both sets of fuzzy hashes visually, we can identify that they match,
except for the fi rst byte, which is where our modifi cation occurred. Alternately, we
can run ssdeep in directory mode by passing the -d fl ag, which will compare all fi les
in a directory:

 user@ubuntu:~/ssdeep-test$ ssdeep -d *
 /home/user/ssdeep-test/lorem2.txt matches /home/user/ssdeep-

test/lorem1.txt (99)

 Full usage information and tutorials, source code, and binaries for Windows are
available at the ssdeep site [7] .

 CARVING
 A wise forensic examiner once said “when all else fails, we carve.” Extraction of
meaningful fi le content from otherwise unstructured streams of data is a science
and an art unto itself. This discipline has been the focus of numerous presenta-
tions at the Digital Forensics Research Workshop over the years, and advance-
ments continue to be made to this day. At its most basic, however, the process
of carving involves searching a data stream for fi le headers and magic values,
determining (or guessing) the fi le end point, and saving this substream out into
a carved fi le. Carving is still an open problem and is an area of ongoing, active
experimentation. Numerous experimental programs are designed to implement
specifi c new ideas in carving, as well as more utilitarian programs geared toward
operational use.

 NOTE
 Hash Collisions
 Over the past few years there have been some publicized attacks against the MD5 algorithm
in which researchers were able to generate two different fi les that generated the same MD5
hash value. All of the attacks made public thus far have been in the category of collision
attacks. In a collision attack, a third party controls both fi les. This scenario is not applicable
for most of the tasks we use hashing for in forensic analysis, such as verifying an image
fi le has not been altered or verifying a fi le against a set of known good or bad hashes. That
said, tools such as hashdeep can use multiple hash algorithms (in addition to nonhash
data like fi le size) to strengthen the confi dence of a hashset.

 TIP
 hachoir-subfi le
 The hachoir-subfi le program can be used to intelligently identify fi les within binary
streams, including unallocated space from disk images. It operates in a manner similar
to the sigfi nd , but uses intelligence about fi le formats to provide a much stronger signal
that an actual fi le has been located, minimizing false positives. While not a carving tool
in and of itself, it can be used to positively identify fi les inside of a stream for subsequent
manual extraction. The hachoir suite of programs is discussed in detail in Chapter 8 .

59Carving

 Foremost
 Foremost is a fi le carving program originally written by Jesse Kornblum and Kris
Kendall at the Air Force Offi ce of Special Investigations and later updated by Nick
Mikus of the Naval Postgraduate School. It uses defi ned headers, footers, and knowl-
edge of the internal structures for supported fi le types to aid in carving. A complete
list of the fi le types supported natively by foremost can be found in the program’s
man page, but suffi ce it to say it includes the usual suspects: JPEG images, offi ce
documents, archive fi les, and more. If necessary, additional fi le types can be defi ned
in a custom foremost.conf fi le. We will discuss the analysis of fi les and their content
in Chapter 8 .

 Foremost can be installed easily using apt-get on Ubuntu or by retrieving and
compiling the source (or supplied binaries) from the foremost project page at Source-
Forge: http://foremost.sourceforge.net/ . Options that may be particularly important
include:

 -d - turn on indirect block detection (for UNIX fi le-systems)
 -i - specify input fi le (default is stdin)
 -a - Write all headers, perform no error detection (corrupted

fi les)
 -w - Only write the audit fi le, do not write any detected fi les

to the disk
 -o - set output directory (defaults to output)
 -c - set confi guration fi le to use (defaults to foremost.conf)
 -q - enables quick mode. Search are performed on 512 byte

boundaries.

 We can perform a basic run of foremost using the Digital Forensics Research Work-
stop 2006 carving challenge fi le as input [8] . We will use the -v fl ag to increase the
verbosity of the output.

 user@ubuntu:~/dfrws $ foremost -v -i dfrws-2006-challenge.raw
 Foremost version 1.5.4 by Jesse Kornblum, Kris Kendall, and Nick Mikus
 Audit File
 Foremost started at Sat Dec 10 21:51:55 2010
 Invocation: foremost -v -i dfrws-2006-challenge.raw
 Output directory: /home/user/dfrws/output
 Confi guration fi le: /usr/local/etc
 Processing: dfrws-2006-challenge.raw
 |--
 File: dfrws-2006-challenge.raw
 Start: Sat Jan 1 21:51:55 2011
 Length: Unknown

 Num Name (bs=512) Size File Offset Comment
 0: 00003868.jpg 280 KB 1980416
 1: 00008285.jpg 594 KB 4241920
 2: 00011619.jpg 199 KB 5948928
 3: 00012222.jpg 6 MB 6257664

60 CHAPTER 3 Disk and File System Analysis

 4: 00027607.jpg 185 KB 14134784
 5: 00031475.jpg 206 KB 16115200
 6: 00036292.jpg 174 KB 18581504
 7: 00040638.jpg 292 KB 20806656
 8: 00041611.jpg 1 MB 21304832
 9: 00045566.jpg 630 KB 23329792
 10: 00094846.jpg 391 KB 48561152
 11: 00000009.htm 17 KB 4691
 12: 00004456.htm 22 KB 2281535
 13: 00027496.htm 349 KB 14078061
 14: 00028244.htm 50 KB 14460928
 15: 00029529.htm 183 KB 15118957
 16: 00032837.doc 282 KB 16812544
 17: 00045964.doc 71 KB 23533568
 18: 00028439.zip 157 KB 14560768
 19: 00030050.zip 697 KB 15385752
 20: 00045015.zip 274 KB 23047680
 21: 00007982.png 6 KB 4086865 (1408 x 1800)
 22: 00033012.png 69 KB 16902215 (1052 x 360)
 23: 00035391.png 19 KB 18120696 (879 x 499)
 24: 00035431.png 72 KB 18140936 (1140 x 540)
 *|
 Finish: Sat Jan 1 21:51:57 2011
 25 FILES EXTRACTED

 jpg:= 11
 htm:= 5
 ole:= 2
 zip:= 3
 png:= 4

 Note that due to the intentional fragmentation of this test image, the bulk of these
extracted fi les will not be identical to the original items. Simson Garfi nkel presented
research at the Digital Forensics Research workshop in 2007 that indicated that the
majority of fi les on any give volume will be contiguous and that most fragmented
fi les are simply split into two fragments, with a single block splitting the halves [9] .

 TIP
 Additional Carving Utilities
 Scalpel is a fi le carver forked from Foremost version 0.69 and completely rewritten with
an eye toward increasing performance. The latest public release of scalpel is version 1.60,
released in December 2006. The authors have presented papers referencing advanced
versions of scalpel with parallelized carving support and GPU acceleration, but at the time
of this publication these have not been released publicly [10].

 PhotoRec is an advanced, cross-platform carving program distributed as part of the
TestDisk program mentioned in the Partition Identifi cation and Recovery section. Like
TestDisk, CGSecurity provides an extensive guide that details use of the tool on their
Web site [11] .

61Forensic Imaging

 The most common scenario for carving in an actual investigation is the attempted
retrieval of deleted data for which metadata are no longer present or no longer linked.
In these cases, extracting the unallocated space of the volume into a contiguous
block using blkls has the potential to eliminate fragmentation caused by currently
 allocated blocks.

 FORENSIC IMAGING
 In creation of a forensic image, we are trying to capture an accurate as possible
representation of source media. This is not unlike the police lines set up at a physi-
cal crime scene. These lines are put in place to minimize the amount of change that
occurs in a crime scene, which in turn gives the crime scene investigators the most
accurate data possible.

 Imagine, then, if the crime scene investigators could create a copy of the actual
crime scene. In the real world this is madness, but this is what we aim to do with
creation of a forensic image.

 A good forensic imaging process generates an exact duplicate (or a container that
holds an exact duplicate) of the source media under investigation. By exact duplicate
we mean exactly that—we aim to acquire a complete sector-for-sector, byte-for-byte
copy of original media. There should be no on-disk information present on source
media that do not appear in our forensic image. An ideal imaging process should not
alter original media, fail to acquire any portion of original media, nor introduce any
data not present on source media into the image fi le.

 A traditional forensic analyst examining a gun used in a homicide works on the
original. Why doesn’t the computer forensic examiner do the same? Examiners gen-
erate forensic images for several reasons. The primary reason is to provide an exact
copy of original media to examine. For the traditional analyst, the actual weapon is
the best evidence . In the case of digital evidence, we can make a duplicate of source
media that matches the original in every way. Working with original digital evidence
can be very dangerous because the original can be altered or destroyed with relative
ease. By only accessing the original media once, to generate our forensic image, we
minimize our opportunities to alter the original accidentally. Another benefi t of work-
ing on an image is if we make a mistake and somehow end up altering the image fi le
in some way, we can generate a new exact duplicate from the intact original media.

 Deleted Data
 Another reason examiners use forensic imaging is for completeness . Simply exam-
ining an active fi le system as presented by the operating system is not suffi ciently
thorough for a forensic examination. Most volumes contain reams of potentially
interesting data outside of the viewable, allocated fi les on a mounted fi le system.
This includes several categories of “deleted data.”

62 CHAPTER 3 Disk and File System Analysis

 • Deleted fi les are the “most recoverable.” Generally this refers to fi les that have
been “unlinked”—the fi le name entry is no longer presented when a user views
a directory, and the fi le name, metadata structure, and data units are marked
as “free.” However, the connections between these layers are still intact when
forensic techniques are applied to the fi le system. Recovery consists of record-
ing the relevant fi le name and metadata structures and then extracting the
data units.

 • Orphaned fi les are similar to deleted fi les except the link between the fi le name
and metadata structure is no longer accurate. In this case, recovery of data (and
metadata structure) is still possible but there is no direct correlation from the fi le
name to recovered data.

 • Unallocated fi les have had their once-allocated fi le name entry and associated
metadata structure have become unlinked and/or reused. In this case, the only
means for recovery is carving the not-yet-reused data units from the unallocated
space of the volume.

 • Overwritten fi les have had one or more of their data units reallocated to another
fi le. Full recovery is no longer possible, but partial recovery may depend on the
extent of overwriting. Files with fi le names and/or metadata structures intact that
have had some or all data units overwritten are sometimes referred to as Deleted/
Overwritten or Deleted/Reallocated .

 File Slack
 As mentioned previously, the minimum space that can be allocated on a volume is a
single block. Assuming a 4K block size, on a standard drive with 512-byte sectors,
this means the ASCII text fi le containing a single byte—the letter ‘a’—will consume
eight sectors on the disk. We provided the ‘a’—where did the other 4095 bytes writ-
ten to the disk come from?

 The answer is, as always, it depends. Different fi le systems and operating systems
handle this differently, but generally the process goes:

 • The cluster to be used is marked as “allocated” and assigned to the fi le’s metadata
structure.

 • The ‘a’ followed by 511 null bytes (hex 00) are placed in the fi rst sector.

 Astute readers will note that we didn’t state how the next seven sectors are written to
the disk. That’s not an oversight—they aren’t written to the disk. They retain what-
ever data were last stored in them during their previous allocation. This is what is
known as fi le slack or slack space .

 Figure 3.2 demonstrates the generation of fi le slack using three successive views
of the same eight blocks on a disk. At fi rst the row consists of new, empty, unallo-
cated blocks. Then, fi le A is created, has eight blocks allocated to it, and those eight
blocks are fi lled with data. File A is then “deleted” and sometime later the fi rst fi ve
blocks are reallocated and overwritten with the content from File B. This leaves three
of the blocks containing data from File A unallocated but recoverable.

63Forensic Imaging

 FIGURE 3.2

 File slack.

 NOTE
 RAM Slack
 While all modern operating systems pad the written sector with null bytes, this was not
always the case. MS-DOS and older DOS-based versions of Microsoft Windows would
pad the rest of the sector out with whatever contents of memory happened to be next
to data being written. These data, between the end of allocated data and the beginning
of previously allocated data, became known as RAM slack . Given this, RAM slack could
potentially contain data that were never written to the disk, such as cryptographic keys or
passphrases.

 TIP
 Volume or Disk?
 When creating a forensic image, most of the time an examiner will use the physical disk
(e.g., /dev/sda) as input. However, in some circumstances you may be better off imaging the
volume or volumes of interest (e.g., /dev/sda1). One example is when dealing with a RAID
array. Imaging physical disks requires the capability to rebuild the RAID from these disk
images at a later date, which (as mentioned previously) can be diffi cult. Depending on the
type of RAID and the utilities available to you as an examiner, this may prove to be diffi cult
or impossible. Another example is in the case of Storage Area Network volume—with many
of these systems, removing and imaging the physical drives are simply not options.

64 CHAPTER 3 Disk and File System Analysis

 dd
 The dd command is the most basic open source tool available to create a forensic
image. Because it is nearly universally present on any Unix-like operating system
and is the basis for several other forensic imaging utilities, learning its operation is
valuable to any examiner. Put simply, dd copies data from one place to another. The
user can provide various arguments and fl ags to modify this simple behavior, but the
basic syntax of the tool is fairly clear. The excerpt from the tool help given here has
the basic options you need to understand in bold.

 user@forensics:~$ dd --help
 Usage: dd [OPERAND]…
 or: dd OPTION
 Copy a fi le, converting and formatting according to the operands.
 bs=BYTES force ibs=BYTES and obs=BYTES
 cbs=BYTES convert BYTES bytes at a time
 conv=CONVS convert the fi le as per the comma separated symbol list
 count=BLOCKS copy only BLOCKS input blocks
 ibs=BYTES read BYTES bytes at a time
 if=FILE read from FILE instead of stdin
 ifl ag=FLAGS read as per the comma separated symbol list
 obs=BYTES write BYTES bytes at a time
 of=FILE write to FILE instead of stdout
 ofl ag=FLAGS write as per the comma separated symbol list
 seek=BLOCKS skip BLOCKS obs-sized blocks at start of output
 skip=BLOCKS skip BLOCKS ibs-sized blocks at start of input
 status=noxfer suppress transfer statistics

 So, to make a simple clone from one drive to another, we would invoke the tools
like so:

 dd if=/dev/sda of=/dev/sdb bs=4096

 This takes reads from the fi rst disk, 4096 bytes at a time, and writes the content out
to the second disk, 4096 bytes at a time. If we did not provide the block size (bs=)
argument, dd would default to reading and writing a single 512-byte sector at a time,
which is quite slow.

 Cloning a disk is interesting but of limited use for an examiner. For the most
part, we are interested in creating a forensic image fi le —a fi le that contains all of the
content present on the source disk. This, also, is simple to do using the same syntax.

 user@forensics:~$ sudo dd if=/dev/sdg of=dd.img bs=32K

 [sudo] password for user:
 60832+0 records in
 60832+0 records out
 1993342976 bytes (2.0 GB) copied, 873.939 s, 2.3 MB/s

65Forensic Imaging

 The key items of interest in the console output for the dd command are “records
in” and “records out” lines. First, they match, which is good—this indicates that we
did not lose any data due to drive failures, failure to write the output fi le fully, or any
other reason. Second, the “60832+0” records indicate that exactly this many 32K
blocks were both read and written. If we had imaged a drive that was not an exact
multiple of 32K in size, the “+0” would instead show “+1,” indicating that a partial
record was read (and written).

 Some of the other options of forensic interest present in the base dd command
are the conv (convert) option. If imaging a failing or damaged hard drive, the
 conv=noerror,sync option can be used to ignore read errors, writing blocks of
NULL characters in the output fi le for every block that was unable to be read. Addi-
tionally, in the case of a dying drive, supplying the ifl ag=direct option (use direct
I/O, bypassing the kernel drive cache) and reducing the block size to 512 bytes will
ensure that the amount of unrecoverable data is kept to a minimum.

 dcfl dd
 While dd can and has been used to acquire forensically sound images, versions of dd
are available that are specifi cally designed for forensic use. The fi rst of these to be
examined is dcfl dd , created for the Defense Computer Forensics Laboratory by Nick
Harbour. The dcfl dd project forked from GNU dd , so its basic operation is quite
similar. However, dcfl dd has some interesting capabilities that aren’t found in vanilla
 dd . Most of the capabilities revolve around hash creation and validation, logging
of activity, and splitting the output fi le into fi xed-size chunks. The extended dcfl dd
functions, as well as base dd functions, can be reviewed by passing the --help fl ag
to the dcfl dd command.

 Unsurprisingly, performing the same image acquisition that was done with dd
using dcfl dd is quite similar. In fact, if we did not want to take advantage of the addi-
tional features of dcfl dd , we could use the exact same arguments as before and would
get the same results. In the code section following, we reimage the same device as
previously, but at the same time generate a log of the md5 and sha1 hashes generated
of each 512 megabyte chunk of the disk.

 WARNING
 Bad Sectors
 Note that using dd with the conv=noerror argument is not the recommended course of
action when attempting to image a damaged hard drive. Given the option, we recommend
using GNU ddrescue , a specialized version of dd designed to deal with retrieving data
from uncooperative drives. However, in some cases your only option may be to either
retrieve a partial image using dd or retrieve nothing at all.

66 CHAPTER 3 Disk and File System Analysis

 user@forensics:~$ sudo dcfl dd bs=32k if=/dev/sdg of=dcfl dd.img
hashwindow=512M hash=md5,sha1 hashlog=dcfl dd.hashlog

 60672 blocks (1896Mb) written.
 60832+0 records in
 60832+0 records out

 dc3dd
 The last dd variant we will examine is dc3dd , a forensically oriented version cre-
ated by Jesse Kornblum for the Department of Defense Cyber Crime Center. dc3dd
is developed as a patch applied to GNU dd , rather than a fork, so dc3dd is able to
incorporate changes made in the mainline dd more rapidly than dcfl dd . dc3dd has
all of the same extended features found in dcfl dd and has core dd features currently
absent in the latest dcfl dd release.

 We can provide the same arguments to dc3dd that were used previously with
 dcfl dd .

 user@forensics:~$ sudo dc3dd bs=32k if=/dev/sdg of=dc3dd.img
hashwindow=512M hash=md5,sha1 hashlog=dc3dd.hashlog

 [sudo] password for user:
 warning: sector size not probed, assuming 512
 dc3dd 6.12.3 started at 2010-09-03 17:34:57 -0700
 command line: dc3dd bs=32k if=/dev/sdg of=dc3dd.img

hashwindow=512M hash=md5,sha1 hashlog=dc3dd.hashlog
 compiled options: DEFAULT_BLOCKSIZE=32768
 sector size: 512 (assumed)
 md5 0- 536870912: 07c416f8453933c80319c2d89e5533ad
 sha1 0- 536870912: a222f5835ed7b7a51baaa57c5f4d4495b1ca1e79
 md5 536870912- 1073741824: acac88a20c6d6b364714e6174874e4da
 sha1 536870912- 1073741824:

5b69440a15795592e9e158146e4e458ec8c5b319
 md5 1073741824- 1610612736: ed9b57705e7ae681181e0f86366b85e6
 sha1 1073741824- 1610612736:

bc5369977d9a2f788d910b5b01a9a1e97432f928
 md5 1610612736- 1993342976: 812c94592ec5628f749b59a1e56cd9ab
 sha1 1610612736- 1993342976:

bb789315a814159cdf2d2803a73149588b5290ee
 md5 TOTAL: 58e362af9868562864461385ecf58156
 sha1 TOTAL: 8eaba11cb49435df271d8bc020eb2b46d11902fe
 3893248+0 sectors in
 3893248+0 sectors out
 1993342976 bytes (1.9 G) copied (??%), 908.424 s, 2.1 M/s
 dc3dd completed at 2010-09-03 17:50:06 -0700

 Note that dc3dd produces a hash log to the console as well as writing it out to
the fi le passed in the hashlog= argument. Additionally, it presents the sector count
rather than the block count as a summary upon completion.

67References

 SUMMARY
 This chapter discussed the core concepts of disk and fi le system analysis. In addition,
it explored many of the fundamental concepts of forensic analysis, such as forensic
imaging, dealing with forensic containers, and hashing. Through use of the Sleuth Kit,
we have shown how to exploit a fi le system for artifacts of forensic interest. Subsequent
chapters will build upon this foundation to examine and analyze higher level artifacts.

 References
 [1] B. Carrier, 2005. File System Forensic Analysis. Addison-Wesley, Boston, MA.
 [2] TestDisk Step By Step—CGSecurity. http://www.cgsecurity.org/wiki/TestDisk_Step_

By_Step .
 [3] RAID Recovery—PyFLAG. http://pyfl ag.sourceforge.net/Documentation/articles/raid/

reconstruction.html .
 [4] libewf—Browse /documentation/EWF fi le format at SourceForge.net . http://sourceforge

.net/projects/libewf/fi les/documentation/EWF%20fi le%20format/ .
 [5] Getting Started with Hashdeep. http://md5deep.sourceforge.net/start-hashdeep.html .
 [6] J. Kornblum, Identifying almost identical fi les using context triggered piecewise hashing .

Paper presented at Digital Forensics Research Workshop, 2006. Elsevier, (accessed
13.09.10).

 [7] Getting Started with ssdeep. http://ssdeep.sourceforge.net/usage.html .
 [8] Digital Forensics Research Workshop 2006 File Carving Challenge. http://www.dfrws

.org/2006/challenge/dfrws-2006-challenge.zip .
 [9] S.L. Garfi nkel, Carving contiguous and fragmented fi les with fast object validation .

Paper presented at Digital Forensics Research Workshop, 2007.
 [10] Scalpel: A Frugal, High Performance File Carver. http://www.digitalforensicssolutions

.com/Scalpel/ .
 [11] PhotoRec Step By Step – CGSecurity, http://www.cgsecurity.org/wiki/PhotoRec_Step_

By_Step (retrieived Jan 9, 2011).

 TIP
 Creating “Expert Witness Format” Images
 It is likely that you will have to provide forensic images for use by a third party at some
point in your career. Depending on the capabilities and experience of the other party, you
may wish to provide them with images in the “Expert Witness Format” discussed in the
 Forensic Containers section. Note that EnCase is entirely capable of reading from “raw”
images, but should you receive a specifi c request to provide images in this format, you can
comply using open source tools.

 The ewfacquire utility is a part of the LibEWF package and provides a robust
console interface for generating EWF image fi les. It is invoked simply by providing the
 ewfacquire command with an input source. The program will prompt the user for
information required to generate the image fi le.

 The guymager application is a graphical forensic imaging utility that can be used to
generate raw, AFF, and EWF image fi les. Note that guymager uses LibEWF for its EWF
support, so functionally these two tools should be the same when generating EWF containers.

