Conducting pre/postblast investigations

INTRODUCTION

In this chapter, we discuss the role of WIT in conducting pre- and postblast investigations of IED scenes as well as preparing for those missions. Scene safety will be discussed as the WIT operator conducts IED scene analysis to determine what types of IED events have taken place. We will discuss the common forms of IED attacks, scene investigation limitations as well as evidence collection and postmission reporting. Finally, we discuss detainee operations as they pertain to the WIT mission.

WITs ROLE WITHIN THE EOD TEAM

When WITs are deployed to their AOR, they are married up with an EOD team, who responds to 9-Line calls when IEDs, caches, and postblast scenes are detected by the maneuver units in the field. WIT members are being thrust upon EOD teams to conduct their missions, creating a dangerous environment for the WIT member as well as the EOD technician. The EOD community is a very tight-knit group who work and play hard together. EOD work is dangerous and there is no margin for error. EOD technicians live on the edge daily and accept the risk that they may blow themselves up, but they never want to be the one that causes the death or injury of an innocent. WIT members respond to IED incidents and can become a liability to the EOD team, a liability some EOD personnel do not want to take on. Prior to the official WIT mission, EOD had been conducting a quasi-WIT mission in the form of photographing the scenes, collecting some evidence if it was feasible, and writing a short report as to what happened at these scenes. As you will see later in this chapter, WIT now takes the mission to new levels by not only collecting and documenting the scenes, but also providing an in-depth analytical report used to study TTPs of the enemy, analyze trends in IED activity within an AOR, and exploit any evidence found to glean any and all actionable intelligence available to them.

When a WIT element arrives at an EOD unit, they should make every effort to explain their mission to them as well as the strengths and
weaknesses within the team. The EOD leadership may have past experiences with WIT, good or bad, that could affect the initial reception the WIT members receive. The EOD technician assigned to a WIT should conduct the initial liaison with the EOD team as they speak the same language and have a common core of experience and bond, even if they are from different military services. On rare occasions, the EOD technician assigned to the WIT can cause problems as he/she may feel slighted about being assigned to WIT and not to a deployed EOD team. This attitude creates dissension within the WIT element and makes the team ineffective. WIT members have in the past become mission liabilities or portrayed themselves as superior and not a team player. Such issues can cause an EOD team not to want them on missions and refuse to take them along or tell them to drive their own vehicle within the responding convoy. If the EOD team has had good experiences with WIT members, they will more than likely be given the benefit of doubt until they either prove they can be professional and a force multiplier or a hindrance.

WIT may respond to 9-Lines with EOD in their own vehicle or ride in the EOD vehicle as an actual member of the EOD team. Methods of responding to IED events will depend on how dangerous the roads are within the AOR, available vehicles to respond in, and how many EOD teams the WIT element will have to support. Some WIT travel in their own vehicle with at least three members (driver, team leader, and gunner) or they split into a one person WIT supporting multiple EOD teams and riding with that team to IED events. In either method, the WIT members need to integrate themselves with the EOD team and become a functional team member. A WIT member can accomplish this by volunteering to help get equipment out of the vehicle while on scene, provide security when not performing a WIT function, and be additional eyes and ears for the safety of the team. This may sound like common sense or not that much to ask, but those few simple tasks I mentioned will go a long way with the EOD team and show them you are not going to be a hindrance or liability. Over time, successful WITs will have cultivated excellent relationships with their EOD team and will have laid a positive foundation for the next WIT that the EOD team will encounter (Figure 3.1).

PREMISSION PREPARATIONS

Premission planning starts stateside, even before the WIT leaves the United States and continues after arriving in the AOR that they are assigned to. As a team is formed and each of the members train and learn
together, each person’s strengths and weaknesses will start to show. As the team becomes more proficient in learning their mission, each member’s role within the team will become evident. One team member may be an excellent report writer, another a great photographer, and another member could be proficient in lifting fingerprints. A team should plan in advance how they will operate as a team at IED scenes based on those strengths and weaknesses. The only issue with this sound planning theory is that when they arrive in their AOR, teams can be split to support multiple EOD teams or other FOBs that require WIT support. In these instances, the WIT members must be prepared to accomplish all aspects of their WIT training.

Once WIT members arrive at their FOB, the first order of business is to ensure all of the WIT equipment needed has arrived and has been inventoried. If any equipment is damaged or missing, the WIT member will need to contact the WIT Headquarters element at Camp Victory. The second order of business is to begin the liaison efforts mentioned previously with the EOD team(s) that the WIT member will be working with. The third order of business will be to review previous WIT reports from the AOR. This will help the team quickly get up to speed on the types of IEDs found in the past, common locations of IED sites, and other information pertinent to the AOR. If the WIT member is relieving an existing WIT element, many of these preparations will be made easier by their
presence and there usually will be 1-2 weeks overlap called “right seat/left seat.” During this overlap phase, the new WIT member will ride with an outgoing WIT member (right seat) to learn the EOD team’s operating nuances as well as the AOR while responding to 9-Line calls. After a week, the outgoing WIT member will become secondary and the new WIT member will take over as the primary WIT investigator (left seat). By the time this training overlap is completed, the new WIT member should be able to take the mission and run it.

When planning to go on missions, it is important to pay attention to your personal equipment and ensure it is set up in the best configuration for portability and functionality. Besides carrying your weapons and wearing all of your battle gear, you will be carrying your WIT tools for evidence collection. The WIT kits contain two photography bags that can be used not only to carry the supplied cameras, but also house fingerprinting materials, evidence bags, etc. that a WIT member will need on the scene. These “go-bags” are designed to be portable and not to hinder the WIT member while wearing all of his/her protective gear and weapons. As the WIT member conducts missions, he/she will learn better what evidence collection items to take and what items to leave back at the FOB as they may be rarely used or not used at all.

Another premission planning suggestion is to look at the vehicles you will be driving or riding in to ensure all aspects of those vehicles are operational. Also look where items are stored, where you will stow your gear, and where you will be riding. If you will be riding with EOD, ask ahead of time what your responsibilities will be while on missions. Ensure all communication devices are functioning, as well as the electronic counter measure devices installed for that particular vehicle (Figure 3.2).

SCENE SAFETY

When responding to an IED scene or cache, safety at the scene is of utmost importance. Once you leave the protection of your armored vehicle, many hazards await you. Upon arrival, the battalion that has the battle space where the IED scene is located will have a protective cordon set up that EOD and WIT will enter to process the scene. All team members that actually leave the vehicle to conduct their portion of the mission will first scan the area from their feet out to 25 m looking for booby traps and secondary IEDs that may be waiting for them. This process is called “5 & 25s” and is very important and each member must do this scan religiously each time they exit their vehicles. The enemy targets EOD teams as they are their nemesis who defeat their bomb making efforts.
Since WIT responds with EOD, they become a target as well. There have been many instances where teams have discovered secondary IEDs implaced and designed to detonate while the teams are investigating the scenes. The enemy watches our teams and their TTPs to see how they operate. It is imperative that EOD and WIT change their approaches to blast scenes when driving in and how they set up to conduct their mission. There will be instances where the enemy will place a “dummy” IED and watch how EOD and WIT respond to the scene. A few days later they will place a real IED in the same place. The IED itself could be booby trapped or a secondary IED could be placed where their truck was parked when they responded to the dummy IED. By not changing approaches or operating procedures, especially when returning to the same scene from a previous mission, could prove disastrous.

Besides secondary IEDs and booby traps, the second safety consideration is the possibility of snipers in the area. While on scene and outside your armored vehicle, you can feel very vulnerable and exposed. Do not stand in one place too long and scan your surroundings and rooftops constantly. This is a time where those team members that are outside of the vehicle provide security when not performing a mission function. Every time I left the vehicle, especially in urban areas, the hair on the back of my neck would
stand up because I was wondering if a sniper was somewhere out there. In the early years of WIT, the enemy would see EOD arrive at IED scenes and conduct their mission. Then, they started seeing one or several other soldiers show up and start photographing scenes and picking up items off the ground and putting the items in bags. They did not know what these soldiers’ roles were, but in 2006, a battalion in the northern area of AO Topeka outside AR Ramadi, Iraq stumbled on a sniper training area in the desert. They discovered rifles, ammunition, and training manuscripts. The training manuscripts described tactics and techniques for the sniper. Also in this manuscript there was a section describing targets to select. It mentioned that when EOD teams arrive on an IED scene, the soldier with the camera should be shot. They were not sure at that time what WIT was, but they thought whoever they were, they were important enough to be shot. So, who on your team is going to carry the camera?

One last hazard that a WIT team may face is indirect fire from small arms, rocket propelled grenades (RPGs), and mortar fire. There have been times when EOD and WIT have been attacked by small arms fire from enemy forces moving through the area while on IED scenes. While you are in Iraq or Afghanistan, you will become familiar with the times of day when prayer is conducted and you will hear the calls to prayer over loudspeakers throughout any city you may be in. The TTP that the enemy has used in the past is to wait for the EOD team and WIT to arrive at an IED scene and then make a call to prayer to let the enemy forces know the U.S. forces have arrived so that they can make their attack. If you hear the call to prayer when it is not the time for prayer, expect the enemy to show up.

RPGs and mortars are prevalent and readily available for enemy forces and are fired at EOD teams and WIT quite often. The scary part of this type of attack is that you can’t hear them coming in on you until they either fly over your head or land and detonate. Sometimes that can be too late (Figure 3.3).

ON SCENE IED ANALYSIS

Upon arrival at an IED scene, typically the EOD team leader will meet with the cordon commander to determine the situation. This may be a pre- or postblast site and on occasions, a cache. Caches are fairly simple to assess. The WIT member needs to look at the location of where the cache is stored and answer the questions: Why did the enemy select this location for a cache? What was the purpose of the cache? With the contents in the cache, who or what were they possibly targeting? Caches can be a wealth of information for WIT when they discover IED materials as well as any digital media. WIT members will collect IED items such
as detonators, timers, cell phones, telephone base stations, tools, circuitry components, computers, and other digital media that may be found such as flash drives, cameras, compact disks, and SIM cards. WIT will also, time permitting, collect fingerprints of any physical items that cannot be taken as evidence, samples of HME, and swab samples from any component that could have explosive residue left behind. The EOD team will document any and all munitions and explosive devices discovered and will destroy them in several ways. The EOD will sometimes blow up the munitions in place, destroying not only the munitions, but the structure they were stored in as well. Another option is to remove the munitions and take them to the FOB where they are stored until a sufficient amount has been collected. When the EOD feels they have to remove them from their storage area, all of the munitions are loaded into trucks and driven out into the desert where they are piled together and destroyed (Figures 3.4–3.6). This is a safe method to destroy the munitions so that they will not fall back into the hands of the enemy. It is also a great stress reliever as the explosion created is quite a “fireworks” display!

Upon arrival at a preblast IED scene, typically the EOD team leader will meet with the cordon commander to determine the situation. The WIT member should, at this time, take long-range photographs of where the IED is suspected to be and 360° photographs of the surrounding site. We will
FIGURE 3.4 Loading munitions to be destroyed, 2006; AR Ramadi, Iraq. Photo taken by author Rich Watson.

FIGURE 3.5 EOD personnel preparing to destroy captured munitions, 2006; AR Ramadi, Iraq. Photo taken by author Rich Watson.
discuss photography in detail later in this chapter. Afterward, a Talon robot will usually be deployed to assess the IED type and how it can be rendered safe. From the protection of the armored vehicle, an EOD team member will drive the Talon robot remotely to the IED. The WIT member should sit next to the Talon robot driver and take notes as to the type of IED present, its explosive makeup, and look for any new technology or design incorporated into the IED (Figures 3.7–3.9). The WIT member should look at the location of the IED and answer the questions: Why did the enemy select this location for an IED attack? Where is an aiming point for this IED? Who or what were the enemy possibly targeting? What type of IED was this?

Upon arrival at a postblast scene, The WIT member will need to take as much time as allocated to analyze the scene. Once the EOD team determines the area to be safe and free of unexploded ordnance (UXO), WIT can photograph the scene extensively and start any evidence collection processes. The WIT member needs to look at the location of where the IED was placed and answer the questions: Why did the enemy select this location for an IED attack? Where is an aiming point for this IED? Who or what were the enemy possibly targeting? What type of IED was this? The WIT member should consult with the EOD team as to what their assessment of the IED event was and what possible explosives, munitions, and methods were used to detonate the IED (Figure 3.10).
FIGURE 3.7 A Talon robot advancing toward a suspected IED, 2006; AR Ramadi, Iraq. Photo taken by author Rich Watson.

FIGURE 3.8 A Talon robot, 2006; AR Ramadi, Iraq. Photo taken by author Rich Watson.
FIGURE 3.9 View from an enemy firing point toward their aiming point, which is the top of the hill as a dirt road crests it; 2006, AR Ramadi, Iraq. Photo taken by author Rich Watson.

FIGURE 3.10 An EOD technician investigating a postblast scene; 2006, AR Ramadi, Iraq. Photo taken by author Rich Watson.
In all three of the aforementioned IED scenes that a WIT member could respond to, factors that need to be examined are common. On scene, IED analysis is just the first step to the WIT reporting process as the WIT member is not only gathering the facts and evidence from each scene, but any and all intelligence associated with the scenes as well. These important facts will help the WIT members in writing their WIT report after each mission. We will discuss WIT reports later in this chapter under postmission reporting.

PHOTOGRAPH! PHOTOGRAPH! PHOTOGRAPH!

The most important step in the WIT process that a WIT member will conduct is taking digital photographs. Lots and lots of digital photographs! Digital photography in the WIT mission is so important because it will describe the scenes without a word being spoken. Anyone can look at a series of photographs and get the basic idea of an event that occurred. Since cameras were invented, soldiers and the media have been documenting wars and destruction. Photographs tell the stories of lives changed forever, death and destruction; they have been taken to collect intelligence as well. Digital photographs become the foundation for WIT intelligence reports and save the WIT member from having to write everything down on paper to keep a record of the event when he/she has such a limited time on the scene. With the advent of digital cameras, WIT members can snap hundreds of photographs using SD cards or other digital storage containers that are quick and easy to change whereas rolls of film are cumbersome, easily damaged, and limited in the amount of photographs that can be taken.

Each WIT kit that is deployed is equipped with four cameras. There are two Nikon Coolpix point and shoot cameras that can easily be carried in a pouch on the WIT members equipment or in a cargo pocket on their uniform. The kit also includes a JVC digital movie camera that can be used to record the scene as the WIT member narrates or used to take still photographs. The last camera supplied is a Ricoh 500 ruggedized camera with GPS technology, infra-red picture-taking capabilities, and pictures taken can be incorporated into Falcon View software technology. In previous WIT kits, there were Nikon D70 SLRS Cameras with three interchangeable lenses. Although the Nikon D70 cameras took fantastic pictures, the nature of a desert combat environment led to the Ricoh cameras being deployed with the WIT kits because the Nikon D70s were too fragile and could not hold up to the rigors of the battlefield they were deployed to. Often, the Nikon D70s would break when WIT members would have to dive for cover when they came under attack or the lenses would break when accidentally dropped. Having to carry multiple lenses for
different types of photography situations became an issue as well. The Ricoh 500s have worked well to this point and are less bulky than the Nikons, but some complaints from WIT teams have said they use up batteries quickly, so they have to carry several extra batteries for resupply.

All WIT members receive photography training while attending the WIC. They are taught standard law enforcement methods and how to take crime scene photographs. The three main types of photographs a WIT member is taught to take are

- Overall scene photographs
- Medium-range scene photographs
- Closeup photographs

Overall scene photographs are taken when the WIT member first arrives at an IED scene. These pictures should be taken from all directions if possible when outdoors and from all corners of rooms or buildings when indoors. These pictures will give the viewer a good feel of the structure or terrain where the IED event took place. These pictures can be taken while the EOD team leader is assessing the situation as the WIT member cannot do anything until the EOD team ensures the area is safe. There will be times at preblast IED scenes, when these will be the only type of photographs one may get, so the WIT members should take as many photographs as they can. While taking overall photographs, the WIT member should be looking for IED aiming points and locations where the enemy could remotely detonate an IED from. These areas will help the WIT member assess the enemy’s intentions as to whom or what they were targeting.

Medium-range scene photographs are mostly taken indoors when the WIT member has the opportunity to move about the room. Most outdoor medium-range photographs are taken at postblast scenes. The medium-range photographs help bring in more detail of the scene and focus to the immediate area where an IED event occurred. They also show where evidence may be located, dimensions and size comparisons of blast holes, the layout of IED components, and any dead bodies or body parts as a result of an IED blast. The medium-range photographs will also assist the WIT member to remember where items were on the immediate scene so they can recreate their scene sketch that must be included in their WIT report.

Closeup photographs are used to fully document items of evidentiary value and fully detail those items. The closeup photographs should be taken last on scene as once a piece of evidence is documented with a close up, it can be collected and removed from the scene. Back at the FOB, WIT members can take even more detailed photographs of evidence in a
controlled and safe environment. Detailed pictures should be taken of evidence showing all of its sides, any serial numbers or engravings, wiring design, and any modifications to the wiring that may have been completed by the bomb maker, detailed fingerprints prior to attempt a lift, and any circuitry that may be exposed (Figures 3.11 and 3.12).

As mentioned earlier, photographs may be all that you take from an IED scene and become crucial to the WIT member’s ability to write a report.
about the incident. This could occur based on the dangerous nature of the scene. There have been many instances where WIT members could not leave the armored vehicle because bullets were bouncing off the vehicle from small arms fire. In this situation, usually on a postblast scenario, the EOD team leader may drive the vehicle up to the scene and make the best assessment from inside the vehicle. The WIT member can obtain photographs by taking them through the bullet proof windows. Another trick to get photographs when the scene is unapproachable or too dangerous is from the video monitor that the Talon robot driver uses to guide the robot. The Talon has a camera mounted with day and night capabilities. As the EOD member drives the robot, the WIT member can take still photographs from the screen. This way you will be able to get a picture of what the IED or IED scene looks like and can use those pictures in the WIT report. We have found the best camera to use with taking pictures of the robot display is the JVC video camera in still shot mode.

Night-time photography can be challenging, especially when the team is driving “blacked out” with no headlights and using night vision devices to see. You want to avoid using white light to photograph scenes as you light up yourself and your team members, thus making everyone potential sniper targets and you will cause aggravating bright white flashes to anyone wearing night vision devices. Be cognizant of your surroundings and keep safety in mind over getting any photographs (Figure 3.13).
PREBLAST INVESTIGATIVE STEPS

Upon arriving at a preblast IED scene, typically the EOD team leader will meet with the cordon commander to determine the situation. All EOD and WIT members that exit the vehicle should conduct 5 & 25s around their vehicle looking for any secondary IEDs that may have been planted. The WIT member should at this time take long-range photographs of where the IED is suspected to be and 360° photographs of the surrounding site. Once the EOD team determines the type of IED they are dealing with, they will determine a course of action to either render the IED safe or blow it up in place (BIP). There are several types of IEDs that can be encountered that have general descriptions for the purpose of labeling. They are the following:

- Command wire IEDs (CWIED)
- Victim operated IEDs (VOIED)
- Remote controlled IEDs (RCIED)
- Vehicle bourne IEDs (VBIED)
- Human bourne IEDs, also known as “Suicide Bombers”
- Other

CWIEDs are IEDs that are created to be detonated with the use of a command wire that leads from the IED to an initiation device activated by an enemy combatant. Command wires have consistently been copper wire, but can be anything that can carry an electrical current. Copper wire is used extensively as it is thin and can be hidden well from unsuspecting soldiers. The initiation devices will have some sort of power source, usually 9 v batteries and there could be a battery booster at the end of the wire where it is attached to the IED. This type of IED can be dangerous to the enemy insurgent as it places him at risk of being discovered, captured, or killed before the IED can be set off. Mechanical failure can occur as well prior to detonation (Figures 3.14 and 3.15).

VOIED are IEDs that require an unsuspecting victim to initiate activation. Typically, these types of IEDs target foot soldiers and vehicles. VOIEDs have some type of initiation device when stepped on or driven over. The most prevalent initiation device is a pressure switch attached to the IED. These pressure switches are commonly made from hack saw blades, foam or wood, wire, and a 9 v battery pack (Figures 3.16 and 3.17).

VOIEDs can be left in place without any monitoring, but are indiscriminant about whom they will maim or kill. Many innocent Iraqi civilians have been severely injured or killed by VOIEDs that had been left in place. Unfortunately, many children have been the unsuspecting victims of such IEDs.
RCIEDs are very popular with the enemy as they can be close enough to watch the detonation, yet far enough to remain safe from being shot or captured by U.S. and coalition forces. RCIEDs consist of a command wire going from the radio controlled device to the IED. The radio controlled device can be a cell phone, long-range cell phone (LRCT), or Senao.
telephone base stations. These devices can be very basic, with simple to elaborate modifications. The initiation devices for RCIEDs are usually another telephone, either one that belongs to the Senao base stations or cell phones. The cell phones used to detonate RCIEDs can be your everyday cell phone, uniquely modified to set off multiple RCIEDs at once.
Even though the enemy may feel safer using such an IED initiation device, there are limitations and some areas in Iraq are seeing an enemy TTP change of relying on more VOIEDs and CWIEDs. A reason for this change in tactics is our continued use and improvement of electronic countermeasure devices (Figures 3.18 and 3.19).

![FIGURE 3.18](cell Phones used for RCIEDs; 2006, AR Ramadi, Iraq. Photo taken by author Rich Watson.)

![FIGURE 3.19](A modified Senao base station rigged to detonate an RCIED; 2006, AR Ramadi, Iraq. Photo taken by author Rich Watson.)
VBIEDs can be one of the most destructive IEDs that can be used against persons, other vehicles, or physical structures. The amount of explosives that can be packed into a vehicle is limited only by the size and space of the vehicle’s compartments. During my tour in Iraq, I saw VBIEDs made from everyday sedans to Iraqi-style dump trucks. Besides munitions and other types of explosives packed into the vehicle, some bombers will add cans of gasoline to create more thermal effects upon detonation, adding to the destructiveness of this type of IED.

VBIED drivers are typically volunteers who are willing to kill themselves for their cause, but sometimes the drivers are not so willing after they start down the road and think about it. The VBIED maker will sometimes install a radio control device to detonate the VBIED if the driver “chickens out.” Drivers dedicated to the cause have their hands and feet tied to the steering wheel and accelerator just in case they are shot or killed while driving the car toward their intended target. Tying them to the steering wheel and accelerator at times keep the vehicle on its intended path toward creating death and destruction (Figures 3.20–3.22).

Suicide bombers will attack crowds of people causing mass death and destruction. They will strike in bazaars, on public transportation, military
FIGURE 3.21 The remains of a dump truck VBIED after an attack on an Iraqi police station; 2006, AR Ramadi, Iraq. Photo taken by author Rich Watson.

FIGURE 3.22 The remains of a VBIED after the driver attacked a U.S. forces convoy. The convoy gunners shot the vehicle as it quickly approached them causing the VBIED to predetonate; 2006, AR Ramadi, Iraq. Photo taken by author Rich Watson.
checkpoints, and Iraqi police and training centers, to name a few. Suicide bomber vests are homemade and contain any type of shrapnel or projectiles that will cause mass maiming or death. Marbles and ball bearings are very common as they are hard and aerodynamic in flight. Suicide bomber devices can be rigged with many different types of explosives and initiation devices. There are other types of IED devices out there, but the ones listed are the most common that WIT and EOD will encounter while conducting their missions.

After EOD determines what type of IED they are dealing with, they initiate a plan to either disable the IED or blow it up. The WIT member should get as many photographs as possible, as that could be all they get from the scene. If the IED is rendered safe, EOD will remove it from the scene. WIT members should be able to take quality pictures of the device when safely back at the FOB and retrieve any other evidence of value from the components of the device.

If EOD makes the decision to blow the IED up in place, the WIT member may or may not collect any physical evidence from the device. Depending on the safety factors of the scene, the EOD team leader may move closer to the destroyed IED either on foot or by driving the vehicle up to the location. EOD would do this to collect any evidence that survived the blast after they blew it up or to ensure manually that the IED was rendered safe via the actions of the robot. Once EOD is positive the device is rendered safe, it is transported back to the FOB. Manually rendering an IED safe is very dangerous. There have been EOD technicians killed by IEDs that were booby trapped to detonate when the initial initiation device was disabled and the IED picked up (Figure 3.23).

There can be investigative limitations that will prevent the WIT member from processing a preblast IED scene. Some investigative limitations have been mentioned previously, but are worthy of mention again. Investigative limitations can be caused by the environment or safety factors of the scene. It may be unsafe to get out of the vehicle due to enemy activity. If the IED device is blown up by the EOD team and there are remote control problems with the Talon robot, the WIT members may not get any photographs of the device, let alone any physical evidence. The WIT members may get minimum information, relayed from the cordon commander to the EOD team leader and then to them. The WIT member may not have an opportunity to interview any soldiers who were involved in discovering the IED or any civilian witnesses who might have seen those who placed the IED.
There are many types of IED evidence that can be collected from a pre-blast IED scene. The obvious are physical pieces belonging to the IED. Items to look for are command wires, push button detonators, LRCTs, cell phones, pressure switches, tape, batteries, wires, and base stations, to name a few. Once back at the FOB, the WIT member can examine the evidence he/she brought back further for fingerprints, explosive residue, etc. The WIT members have many tools in their WIT kit to use when exploiting evidence. If the WIT member does not feel confident in lifting fingerprints, the evidence item can be contained until it reaches the lab at CEXC, where it can be further exploited. The WIT members have buckle swabs available to swab components that may have trace DNA and they have a Field Forensics explosives residue detection kit available to them to swab parts and pieces from the IED to assist in determining the explosives used to make the IED. Once any and all exploitation of evidence is concluded, the evidence is packed and shipped to CEXC for Level 2 exploitation.

After the mission is completed, the WIT members must file a WIT report that describes the mission they went on, stating facts about where and how...
the IED was placed, whether there were any enemy combatants captured and details of how the IED was discovered and by whom. The WIT members will also list in the report, all evidence they collected and the results of any exploitation they conducted on the evidence. The last thing the WIT members will add to their report is their assessment of the IED scene. The assessment is where the WIT members can write what they personally think about the IED scene as to why the IED was placed where it was, who the enemy were targeting, why they chose the location for the IED and what other similar devices have been used in the past and what the IED trends are for the AOR. This assessment is very important and the WIT members should put as much thought into this section of the report as possible because the readers of the report rely on them to provide the best intelligence available for that AOR. The WIT members, along with the EOD teams in an AOR, are considered the experts in the field when it comes to IEDs and must be diligent in providing the best and most accurate picture of IED events as possible.

POSTBLAST INVESTIGATIVE STEPS

Upon arriving at a postblast IED scene, typically the EOD team leader will meet with the cordon commander to determine the situation. All EOD and WIT members who exit the vehicle should conduct 5 & 25s around their vehicle looking for any secondary IEDs that may have been planted. The WIT member should at this time take long-range photographs of where the IED detonated and 360° photographs of the surrounding site. Once the EOD team determines it is safe to enter the postblast scene area, they will drive the vehicle inside the cordon and get as close as safely possible to the blast scene. Another option is to make a manual approach to the blast scene, if the terrain prevents the EOD vehicle from getting to the blast scene. Once at the blast scene, 5 & 25s should be conducted again. If there is any chance for a secondary IED to be in play, it is at this time. On one postblast scene that I went to, we pushed up closer to the blast hole that was located in the middle of a “T” intersection. Insurgents led a M1A2 Bradley on a chase luring it to the “T” intersection. Fortunately, the M1A2 took the turn at the intersection wide and was not damaged by the IED blast. The insurgents were caught and our EOD team and WIT were called out. 5 & 25s were conducted by us as well as several soldiers that were part of the cordon. We discovered the IED device was a CWIED as we found a car battery in a trash pile that had copper wire going from it to the blast hole and from the battery into a nearby building. After a few
moments on scene, one of the EOD technicians asked me to come with him away from the vehicle. After we stepped a safe distance away, he stated our vehicle was sitting on an IED as the EOD team leader noticed detonation cord sticking out of the ground behind the rear left tire. We later found out that one of the soldiers that helped conduct our 5 & 25s saw the red detonation cord and did not mention it to the EOD team leader. This mistake could have cost our entire team their lives. After moving the vehicle away from the suspected secondary IED, the EOD technicians blew up the ground around the detonation cord and discovered two projectiles rigged as an RCIED. After the projectiles were destroyed, we found the RCIED device several meters away in an old rice sack in a trash pile. That was a close one!

As listed earlier, there are several types of postblast IED scenes you can go to. CWIEDs, VOIEDs, and RCIEDs are the typical scenes a WIT member will respond to. VBIEDs and Suicide Bombers will create their own evidence collection nuances for the WIT member to deal with.

After the EOD technician determines the area safe for the WIT member to conduct his/her mission, start with photographing the scene. If your team is attacked, you may be leaving and not coming back to the scene. Pictures may be all you get. Take photographs of the blast area and the blast hole. Try not to include the EOD technicians in your photographs of the blast hole as they will get in the hole looking for shrapnel and any other evidence that can help them determine what components and amount of explosives were used. Time permitting, measure the width and depth of the blast hole or place something by the hole and photograph it. The item can be used to gauge the size of the hole.

Sometimes, very little or no evidence will be found at the blast scene as evidence could have disintegrated in the blast or been thrown farther than your security element will allow you to go. Other than a VBIED or Suicide Bomber, it may be difficult to determine what type of IED was placed and detonated. The EOD team will give you their best assessment as they are the experts in the explosives field. When in doubt, go with their assessment (Figures 3.24–3.26).

There can be investigative limitations that will prevent the WIT member from processing a postblast IED scene. Some investigative limitations have been mentioned previously, but are worthy of mention again. Investigative limitations can be caused by the environment or safety factors of the scene. It may be unsafe to get out of the vehicle due to enemy activity. The WIT member may get bare minimum information relayed from the cordon commander to the EOD team leader. The WIT member may not
FIGURE 3.24 Fragmentation from munitions used in an IED attack; 2006, AR Ramadi, Iraq. Photo taken by author Rich Watson.

have an opportunity to interview any soldiers who were involved in the IED incident or any civilian witnesses that may have seen who placed the IED. Blown up vehicles and deceased insurgents or U.S./coalition force members may have been removed from the scene by the time EOD and WIT arrive. Postblast scenes differ from preblast scenes as after an IED has detonated, U.S. and coalition forces will be in the scene when the chaos erupts. Evidence will be destroyed and later, after a cordon is established and the on scene forces feel safe, they will walk through the blast scene and collect “souvenirs” to take back to their respective FOBs and units even before EOD arrives and declares the area safe. The WIT member’s evidence literally grows legs and walks away.

Evidence collection at postblast scenes can be like looking for a needle in a haystack. Evidence from any postblast IED will most likely be small and hard to identify. The WIT members should conduct a grid style search for evidence starting at the blast hole and working outward. The WIT members should also ensure they collect dirt samples from the bottom of the blast hole as well as a control dirt sample away from the blast hole. These samples will be used to help determine what type of explosives may have been used in the making of the IED.

If a VBIED is present, attempt to identify the type of vehicle used, any serial numbers on parts of the vehicle, license plates, and any other identifying
features. If the driver is still intact or a portion is still intact, you may be able to get fingerprints from the driver’s hands and biological evidence such as DNA and blood samples from body parts. The WIT member may also find passports and other identification on the body as well as family photographs. These items could be found on suicide bombers as well.

After the mission is completed, the WIT members must file a WIT report that describes the mission they went on, stating facts about where and how the IED was placed, whether there were any enemy combatants captured, details of the detonation and information on any U.S. or coalition forces wounded or dead. The WIT members will also list in the report, all evidence they collected and the results of any exploitation they conducted on the evidence. The last thing the WIT members add to their report is their assessment of the IED scene. The assessment is where the WIT members can write what they personally think about the IED scene as to why the IED was placed where it was, who the enemy were targeting, why they chose the location for the IED and what other similar devices have been used in the past and what the IED trends are for the AOR. This assessment is very important and the WIT members should put as much thought into this section of the report as possible because the readers of the report rely on them to provide the best intelligence available for that AOR. The WIT members, along with the EOD teams in an AOR, are considered the experts in the field when it comes to IEDs and must be diligent in providing the best and most accurate picture of IED events as possible.

During the discussions between pre- and postblast investigations, we covered many examples of these two scenes that are similar and yet distinct to each type of event. We discussed many ways to process the scene and many ways that EOD teams have operated in the past. The information provided has been tried and true during past WIT missions, but is by no means the only way to operate while conducting missions. WIT and EOD teams remain flexible to the scenes they respond to and constantly update their TTPs to keep the enemy off balance. TTPs of today may not work 6 months down the road and will need to be changed. In the end, WIT members rely heavily on the brave men and women of the EOD teams that they respond with to IED incidents. At the end of the day, a WIT member may not agree with the actions of his EOD team leader, or decisions made in the field, but the bottom line is the EOD team leader is responsible for the safety of the EOD team and WIT members and his/her decision is final. Remember, no evidence is worth risking your life or the lives of the team members for. A WIT and EOD team will never respond to all IED activity in their AOR as there are just
not enough resources, so do not fret over one scene that may not have been processed or evidence that may not have been collected for the sake of collecting.

DETAINEE OPERATIONS AS IT PERTAINS TO WIT

At the end of the day, what WIT members do in the field will hopefully build IED evidence against an unknown person who may be caught later and linked to the evidence or provide the Iraqi courts with solid evidence against insurgents captured in relation to an IED event. This is an important end goal that culminates in the success of the WIT mission and best defines the sacrifices they make daily.

Sometimes, WITs forget or do not think about this final piece of their mission as it is not really explained to them very well when attending WIC. Some WIT members may not attempt to link IED evidence to past or present detainees as many of the WIT members do not have law enforcement backgrounds, and therefore do not think as cops do. It is imperative that this portion of the WIT mission be fostered and better understood not only by the WIT members, but by their leaders as well.

When the Special Agents from the Air Force Office of Special Investigations were assigned to WIT, evidence was getting linked with captured insurgents, which helped the prosecuting authorities make a case against them, thus allowing the courts to hold the defendants until a trial was set. Since the agents were pulled off the WIT mission to better serve the war effort in counterintelligence operations, there has been a decline in this thought process for the WITs. This mission is all about collecting evidence and actionable intelligence for the purpose of capturing IED makers and eliminating the IED threat. So why would WIT members risk their lives daily to collect evidence and intelligence and not follow through to the very end? One of the main issues is the WIT leadership does not embrace that aspect of the mission and rely on the labs to make the case against the insurgents.

WIT members must engage all aspects of detainee operations when arriving at their FOB. The first military unit they should contact would be the servicing Judge Advocate General (JAG) from the FOB. The JAG officers assigned know who all of the players are in the justice arena for detainee operations from Tactical Human Intelligence Teams (THT) to the nearest military detention facility, which may be on the same FOB. JAG will appreciate a WIT member’s effort in trying to link IED evidence to detainees involved in IED events. JAG will also give the WIT member sound advice on how to present evidence found on IED scenes, prepare
it to be further analyzed by labs like CEXC and assist them overall in making sound, legal, and ethical cases against insurgents involved in IED attacks and bomb making. If a WIT member is willing to learn and listen to JAG, they will become a huge proponent for their mission that could open doors to hurdles WIT may have not foreseen as well as praise them to the FOB leadership. The more military commanders hear positive praise about WIT, the more likely will they be to assist the teams. I mentioned earlier in this chapter about liaison with EOD teams. This philosophy has the same impact with the judicial system and its components that WITs must work around as they are not versed in military law enforcement and are not part of the military justice culture.

Once WIT members establish their presence on the FOB with JAG, they should seek out the THT members assigned to each battalion in their AOR. The THT members are the MI link to those battalions and are usually the first persons to speak to enemy insurgents that are captured. The THT will create a dossier on each insurgent and document all information about them, and any evidence that was taken from them. Usually, the THT can detain a prisoner for up to 24 hours and then either must set them free or forward them to a detention facility (Figures 3.27 and 3.28).

![FIGURE 3.27 Three insurgents who were captured when their vehicle was spotted surveilling U.S. forces; 2006, AR Ramadi, Iraq. Photo taken by author Rich Watson.](image)
WIT members should explain to the THT how the WIT mission can assist in making a case against detainees that are brought in from IED incidents or who are captured with IED evidence. WIT should strive to obtain the detainees’ capture record for their report and in return, provide the THT with WIT reports that they produce. By providing WIT reports to THT, they can brief and train their battalion soldiers on the latest IED trends in their particular battle space. This has proven to pay huge dividends in the past as soldiers new to IEDs and IED activity in their battle space have been saved from possible death from the valuable education they received because of the WIT and THT relationships and information sharing. This information sharing also assists soldiers in identifying IED components and how to properly report their findings to on scene WIT members so that the IED evidence stays as pristine as possible and lastly, prevents a soldier from handling IED evidence that could be booby trapped.

The final part of the detainee operations equation that a WIT member will have influence over are the detention facilities. The WIT member needs to introduce himself/herself to the detention facility leadership and sell the WIT program as a viable intelligence and evidence gathering mission that can assist them in making cases against their detainees. As with the THT, WIT members should provide detention leadership with their WIT reports to educate them and provide more documentation for a detainee’s capture folder. The more evidence that can be linked to the detainee, the better

![Image](image.png)

FIGURE 3.28 RPGs found hidden in the insurgents vehicle from *Figure 3.27; 2006, AR Ramadi, Iraq.*

Photo taken by author Rich Watson.
chances of a conviction by the Iraqi courts. The WIT member needs to get the buy in from JAG, THT, and the detention facility to make everything work.

Detainee operations are a vital link in destroying the IED threat. Keeping bomb makers in jail and forcing them to trial with sound evidence collected by WIT members will send a clear message to the insurgents that their IED activities will lead them to incarceration or death and hopefully provide a strong deterrent to their activities.

SUMMARY

We have discussed the WIT roles and responsibilities within the EOD community and how productive liaison efforts with the EOD teams are important, not only for operational purposes, but for the success of the mission as well. Premission planning, as well as scene safety prior to and after arriving at IED scenes, has been discussed. Photography has been heavily recommended as the primary means of recording IED scenes and the only thing of value that might be taken away from a scene. During our discussion of pre- and postblast investigations, we have discussed the common types of IEDs a WIT member will be exposed to as well as how and what evidence to collect from them. There are many investigative limitations that can hinder WIT operations, but the mission can still be completed successfully. Reporting the incident and bringing detainees to justice with the actionable intelligence and evidence collected at the IED scenes round out the WIT process.