
 CHAPTER 1

 Microcontroller Systems

 1.1 Introduction

 The term microcontroller or microcomputer is used to describe a system that includes a
 minimum of a microprocessor, program memory, data memory, and input–output (I/O).
Some microcontroller systems include additional components, such as timers, counters,
analog-to-digital (A/D) converters, and so on. Thus, a microcontroller system can be
 anything from a large computer having hard disks, fl oppy disks, and printers to a single-chip
embedded controller.

 In this book, we are going to consider only the type of microcontrollers that consist of a
single silicon chip. Such microcontroller systems are also known as embedded control-
lers , and they are used in offi ce equipment like PCs, printers, scanners, copy machines,
digital telephones, fax machines, and sound recorders. Microcontrollers are also used
in household goods, such as microwave ovens, TV remote control units, cookers, hi-fi
equipment, CD players, personal computers, and fridges. Many microcontrollers are avail-
able in the market. In this book, we shall look at programming and system design using
the programmable interface controller (PIC) series of microcontrollers manufactured by
 Microchip Technology Inc.

 1.2 Microcontroller Systems

 A microcontroller is a single-chip computer. Micro suggests that the device is small and
 controller suggests that the device can be used in control applications. Another term used for
microcontrollers is embedded controller , because most of the microcontrollers are built into
(or embedded in) the devices they control. For example, microcontrollers with dedicated pro-
grams are used in washing machines to control the washing cycles.

 A microprocessor differs from a microcontroller in many ways. The main difference is
that a microprocessor requires several other external components for its operation, such as
program memory and data memory, I/O devices, and an external clock circuit. In general, a
 microprocessor-based system usually consists of several supporting chips interconnected and
operating together. The power consumption and the cost of a microprocessor-based system
are, thus, usually high. A microcontroller on the other hand has all the support chips incorpor-
ated inside the same chip. All microcontrollers operate on a set of instructions (or the user

1© 2010 Elsevier Ltd. All rights reserved.
D.O.I.: 10.1016/B978-1-85617-719-1.00005-1

05-Ch01-9781856177191.indd 105-Ch01-9781856177191.indd 1 1/30/10 2:12:10 PM1/30/10 2:12:10 PM

program) stored in their memory. A microcontroller fetches the instructions from its program
memory one by one, decodes these instructions, and then carries out the required operations.

 Microcontrollers have traditionally been programmed using the assembly language of the
target device. Although assembly language is fast, it has several disadvantages. An assembly
program consists of mnemonics, and it is diffi cult to learn and maintain a program written
using assembly language. Also, microcontrollers manufactured by different fi rms have dif-
ferent assembly languages, and the user is required to learn a new language every time a
new microcontroller is to be used. Microcontrollers can also be programmed using one of
the traditional high-level languages, such as Basic, Pascal, or C. The advantage of high-level
language is that it is much easier to learn than an assembler. Also, very large and complex
programs can easily be developed using a high-level language. For example, it is rather a
complex task to multiply two fl oating point numbers using assembly language. The similar
operation, however, is much easier and consists of a single statement in a high-level language.
In this book, we shall be learning the programming of PIC microcontrollers using the popular
C18 high-level C programming language developed by Microchip Inc.

 In general, a single chip is all that is required to have a running microcontroller system. In prac-
tical applications, additional components may be required to allow a microcomputer to inter-
face to its environment. With the advent of the PIC family of microcontrollers, the development
time of a complex electronic project has been reduced from many days to several hours.

 Basically, a microcomputer executes a user program that is loaded in its program memory.
Under the control of this program, data is received from external devices (inputs), manipu-
lated, and then sent to external devices (outputs). For example, in a simple microcontroller-
based temperature data logging system, the temperature is read by the microcomputer using
a temperature sensor. The microcomputer then saves the temperature data on an SD card
at predefi ned intervals. Figure 1.1 shows the block diagram of our simple temperature data
 logging system.

 The system shown in Figure 1.1 is a very simplifi ed temperature data logger system. In
a more sophisticated system, we may have a keypad to set the logging interval and an

Microcontroller

Temperature
sensor

SD
Card

Input

Output

 Figure 1.1: Microcontroller-Based Temperature Data Logger System

2 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 205-Ch01-9781856177191.indd 2 1/30/10 2:12:11 PM1/30/10 2:12:11 PM

LCD to display the current temperature. Figure 1.2 shows the block diagram of this more
sophisticated temperature data logger system.

 We can make our design even more sophisticated (see Figure 1.3) by adding a real-time clock
chip (RTC) to provide the absolute date and time information so that the data can be saved
with date and time stamping. Also, the temperature readings can be sent to a PC every second
for archiving and further processing. For example, a graph of the temperature change can be

 Figure 1.2: Temperature Data Logger System with a Keypad and LCD

Microcontroller

Temperature
sensor

SD
Card

Input

Output

Keypad

Input

LCD

Output

 Figure 1.3: More Sophisticated Temperature Data Logger

Microcontroller

Temperature
sensor

SD
Card

Input

Output

Keypad

Input

LCD

Output

PC

Output

RTC Input

Microcontroller Systems 3

www.newnespress.com

05-Ch01-9781856177191.indd 305-Ch01-9781856177191.indd 3 1/30/10 2:12:11 PM1/30/10 2:12:11 PM

plotted on the PC. As you can see, because the microcontrollers are programmable, it is very
easy to make the fi nal system as simple or as complicated as we like.

 A microcontroller is a very powerful electronic device that allows a designer to create
 sophisticated I/O data manipulation under program control. Microcontrollers are classifi ed
by the number of bits they process. Eight-bit microcontrollers are the most popular ones and
are used in most microcontroller-based monitoring and control applications. Microcontrollers
of 16 and 32 bits are much more powerful but usually more expensive and not required
in many small-to-medium-size, general-purpose applications where microcontrollers are
generally used.

 The simplest microcontroller architecture consists of a microprocessor, program and data
memory, and I/O circuitry. The microprocessor itself consists of a central processing unit
(CPU) and the control unit (CU). The CPU is the brain of the microprocessor, where all the
arithmetic and logic operations are performed. The CU controls the internal operations of the
microprocessor and sends out control signals to other parts of the microprocessor to carry out
the required instructions.

 Memory is an important part of a microcontroller system. Depending upon the type
used, we can classify memory into two groups: program memory and data memory.
 Program memory stores the application program written by the programmer and is usually
 nonvolatile; i.e., data is not lost after the removal of power. Data memory is where the
temporary data used in a program is stored and is usually volatile; i.e., data is lost after the
removal of power.

 There are basically six types of memory, as summarized below.

 1.2.1 Random Access Memory

 Random access memory (RAM) is a general-purpose memory that usually stores the
user data in a program. RAM is volatile in the sense that it cannot retain data in the
absence of power; i.e., data is lost after the removal of power. The RAM in a system is
either static RAM (SRAM) or dynamic RAM (DRAM). The SRAMs are fast, with access
time in the range of a few nanoseconds, which makes them ideal memory chips in com-
puter applications. DRAMs are slower and because they are capacitor based they require
refreshing every several milliseconds. DRAMs have the advantage that their power
consumption is less than that of SRAMs. Most microcontrollers have some amount of
internal RAM, commonly 256 bytes, although some microcontrollers have more and some
have less. For example, the PIC18F452 microcontroller has 1536 bytes of RAM, which
should be enough for most microcontroller-based applications. In most microcontroller
systems, it is possible to extend the amount of RAM by adding external memory chips if
desired.

4 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 405-Ch01-9781856177191.indd 4 1/30/10 2:12:11 PM1/30/10 2:12:11 PM

 1.2.2 Read Only Memory

 Read only memory (ROM) is a type of memory that usually holds the application program
or fi xed user data. ROM is nonvolatile. If power is removed from ROM and then reapplied,
the original data will still be there. ROMs are programmed at the factory during the manufac-
turing process and their content cannot be changed by the user. ROMs are only useful if
you have developed a microcontroller-based application and wish to order several thousand
microcontroller chips preprogrammed with this program.

 1.2.3 Programmable Read Only Memory

 Programmable read only memory (PROM) is a type of ROM that can be programmed in the
fi eld, often by the end user, using a device called a PROM programmer. PROM is used to
store an application program or constant data. Once a PROM has been programmed, its con-
tents cannot be changed again. PROMs are usually used in low production applications where
only several such memories are required.

 1.2.4 Erasable Programmable Read Only Memory

 Erasable programmable read only memory (EPROM) is similar to ROM, but the EPROM
can be programmed using a suitable programming device. EPROMs have a small clear glass
window on top of the chip where the data can be erased under strong ultraviolet light. Once
the memory is programmed, the window should be covered with dark tape to prevent acci-
dental erasure of the data. An EPROM must be erased before it can be reprogrammed. Many
development versions of microcontrollers are manufactured with EPROMs where the user
program can be stored. These memories are erased and reprogrammed until the user is satis-
fi ed with the program. Some versions of EPROMs, known as one time programmable (OTP)
EPROMs, can be programmed using a suitable programmer device, but these memories
 cannot be erased. OTP memories cost much less than EPROMs. OTP is useful after a project
has been developed completely, and it is required to make many copies of the fi nal program
memory.

 1.2.5 Electrically Erasable Programmable Read Only Memory

 Electrically erasable programmable read only memory (EEPROM) is a nonvolatile memory.
These memories can be erased and can also be reprogrammed using suitable programming
 devices. EEPROMs are used to save constant data, such as confi guration information, maxi-
mum and minimum values of a measurement, and identifi cation data. Some microcontrollers
have built-in EEPROMs. For example, PIC18F452 contains a 256-byte EEPROM where each
byte can be programmed and erased directly by applications software. EEPROMs are usually
very slow. The cost of an EEPROM chip is much higher than that of an EPROM chip.

Microcontroller Systems 5

www.newnespress.com

05-Ch01-9781856177191.indd 505-Ch01-9781856177191.indd 5 1/30/10 2:12:11 PM1/30/10 2:12:11 PM

 1.2.6 Flash EEPROM

 Flash EEPROM is another version of EEPROM type memory. This memory has become
popular in microcontroller applications and is used to store the user program. Flash EEPROM
is nonvolatile and is usually very fast. The data can be erased and then reprogrammed using a
suitable programming device. Some microcontrollers have only 1K of fl ash EEPROM, while
some others have 32 K or more. The PIC18F452 microcontroller has 32 KB of fl ash memory.

 1.3 Microcontroller Features

 Microcontrollers from different manufacturers have different architectures and different
 capabilities. Some may suit a particular application while others may be totally unsuitable
for the same application. Some of the hardware features of microcontrollers in general are
described in this section.

 1.3.1 Buses

 The connections between various blocks of a computer system are called buses. A bus is a
common set of wires that carry a specifi c type of information. In general, every computer
system has three buses: address bus, data bus, and control bus.

 An address bus carries the address information in a computer system. It is a unidirectional bus
having 16 bits in small computer systems and 32 or more bits in larger systems. An address
bus usually carries the memory addresses from the CPU to the memory chips. This bus is also
used to carry the I/O addresses in many computer systems.

 A data bus carries the data in a computer system. It is a bidirectional bus having 8 bits in
small systems and 14, 16, 32, or even more bits in larger systems. A data bus carries the
memory data from the CPU to the memory chips. In addition, data is carried to other parts of
a computer via the data bus.

 The control bus is usually a smaller bus and is used to provide control signals to most parts
of a computer system. For example, memory read and write control signals are carried by the
control bus.

 1.3.2 Supply Voltage

 Most microcontrollers operate with the standard logic voltage of +5 V. Some
microcontro llers can operate at as low as +2.7 V and some will tolerate +6 V without any
problems. You should check the manufacturers’ data sheets about the allowed limits of
the power supply voltage. For example, PIC18F452 microcontrollers can operate with a
power supply +2 to +5.5 V.

6 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 605-Ch01-9781856177191.indd 6 1/30/10 2:12:11 PM1/30/10 2:12:11 PM

 A voltage regulator circuit is usually used to obtain the required power supply voltage when
the device is to be operated from a mains adaptor or batteries. For example, a 5-V regulator is
required if the microcontroller is to be operated using a 9-V battery.

 1.3.3 The Clock

 All microcontrollers require a clock (or an oscillator) to operate. The clock is usually pro-
vided by connecting external timing devices to the microcontroller. Most microcontrollers
will generate clock signals when a crystal and two small capacitors are connected. Some
will operate with resonators or external resistor-capacitor pair. Some microcontrollers have
built-in timing circuits and they do not require any external timing components. If the appli-
cation is not time sensitive, then external or internal (if available) resistor-capacitor timing
components should be used to lower the costs.

 An instruction is executed by fetching it from the memory and then decoding it. This usually
takes several clock cycles and is known as the instruction cycle . In PIC microcontrollers,
an instruction cycle takes four clock periods. Thus, the microcontroller is actually operated
at a clock rate, which is a quarter of the actual oscillator frequency. For example, in a PIC
 microcontroller operating at 4-MHz clock, the instruction cycle time is only 1 μs (frequency of
1 MHz). The PIC18F series of microcontrollers can operate with clock frequencies up to 40 MHz.

 1.3.4 Timers

 Timers are important parts of any microcontroller. A timer is basically a counter, which is
driven either by an external clock pulse or by the internal oscillator of the microcontroller.
A timer can be 8 or 16 bits wide. Data can be loaded into a timer under program control
and the timer can be stopped or started by program control. Most timers can be confi gured
to generate an interrupt when they reach a certain count (usually when they overfl ow). The
 interrupt can be used by the user program to carry out accurate timing-related operations
inside the microcontroller. The PIC18F series of microcontrollers have at least three timers.
For example, the PIC18F452 microcontroller has three built-in timers.

 Some microcontrollers offer capture and compare facilities where a timer value can be read
when an external event occurs or the timer value can be compared to a preset value and an
interrupt generated when this value is reached. Most PIC18F microcontrollers have at least
two capture and compare modules.

 1.3.5 Watchdog

 Most microcontrollers have at least one watchdog facility. The watchdog is basically a timer
that is normally refreshed by the user program, and a reset occurs if the program fails to
 refresh the watchdog. The watchdog timer is used to detect serious problems in programs,

Microcontroller Systems 7

www.newnespress.com

05-Ch01-9781856177191.indd 705-Ch01-9781856177191.indd 7 1/30/10 2:12:11 PM1/30/10 2:12:11 PM

such as the program being in an endless loop. A watchdog is a safety feature that prevents
runaway software and stops the microcontroller from executing meaningless and unwanted
code. Watchdog facilities are commonly used in real-time systems where it is required to
regularly check the successful termination of one or more activities.

 1.3.6 Reset Input

 A reset input is used to reset a microcontroller externally. Resetting puts the microcontro ller
into a known state such that the program execution starts usually from address 0 of the pro-
gram memory. An external reset action is usually achieved by connecting a push-button switch
to the reset input such that the microcontroller can be reset when the switch is pressed.

 1.3.7 Interrupts

 Interrupts are very important concepts in microcontrollers. An interrupt causes the microcon-
troller to respond to external and internal (e.g., a timer) events very quickly. When an inter-
rupt occurs, the microcontroller leaves its normal fl ow of program execution and jumps to a
special part of the program known as the interrupt service routine (ISR). The program code
inside the ISR is executed and upon return from the ISR the program resumes its normal fl ow
of execution.

 The ISR starts from a fi xed address of the program memory. This address is known as the inter-
rupt vector address . Some microcontrollers with multi-interrupt features have just one interrupt
vector address, while some others have unique interrupt vector addresses, one for each interrupt
source. Interrupts can be nested such that a new interrupt can suspend the execution of another
interrupt. Another important feature of a microcontroller with multi-interrupt capability is that
different interrupt sources can be given different levels of priority. For example, the PIC18F
series of microcontrollers have low-priority and high-priority interrupt levels.

 1.3.8 Brown-Out Detector

 Brown-out detectors are also common in many microcontrollers, and they reset a micro-
controller if the supply voltage falls below a nominal value. Brown-out detectors are safety
features, and they can be employed to prevent unpredictable operation at low voltages,
 especially to protect the contents of EEPROM type memories if the supply voltage falls.

 1.3.9 A/D Converter

 An A/D converter is used to convert an analog signal like voltage to digital form so that
it can be read and processed by a microcontroller. Some microcontrollers have built-in
A/D converters. It is also possible to connect an external A/D converter to any type of

8 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 805-Ch01-9781856177191.indd 8 1/30/10 2:12:11 PM1/30/10 2:12:11 PM

microcontroller. A/D converters are usually 8–10 bits having 256–1024 quantization levels.
Most PIC microcontrollers with A/D features have multiplexed A/D converters where more
than one analog input channel is provided. For example, the PIC18F452 microcontroller has
10-bit, 8-channel A/D converters.

 The A/D conversion process must be started by the user program and it may take several
hundreds of microseconds for a conversion to complete. A/D converters usually generate
interrupts when a conversion is complete so that the user program can read the converted
data quickly.

 A/D converters are very useful in control and monitoring applications because most sensors
(e.g., temperature sensor, pressure sensor, and force sensor) produce analog output voltages
that cannot be read by a microcontroller without an A/D converter.

 1.3.10 Serial I/O

 Serial communication (also called RS232 communication) enables a microcontroller
to communicate with other devices using the serial RS232 communication protocol.
For example, a microcontroller can be connected to another microcontroller or to a PC
and exchange data using the serial communication protocol. Some microcontrollers
have built-in hardware called universal synchronous-asynchronous receiver-transmitter
 (USART) to implement a serial communication interface. The baud rate and the data
 format can usually be selected by the user program. If serial I/O hardware is not provided,
it is easy to develop software to implement the serial data communication using any I/O
pin of a microcontroller. The PIC18F series of microcontrollers have built-in USART
modules.

 Some microcontrollers (e.g., PIC18F series) incorporate a serial peripheral interface (SPI)
or an integrated interconnect (I 2 C) hardware bus interface. These enable a microcontroller to
 interface to other compatible devices easily.

 1.3.11 EEPROM Data Memory

 EEPROM type data memory is also very common in many microcontrollers. The advantage
of an EEPROM is that the programmer can store nonvolatile data in such a memory and can
also change this data whenever required. For example, in a temperature monitoring appli-
cation, the maximum and the minimum temperature readings can be stored in an EEPROM.
Then, if the power supply is removed for whatever reason, the values of the latest readings
will still be available in the EEPROM. The PIC18F452 microcontroller has 256 bytes of
 EEPROM. Some other members of the family have more (e.g., PIC18F6680 has 1024 bytes)
EEPROMs.

Microcontroller Systems 9

www.newnespress.com

05-Ch01-9781856177191.indd 905-Ch01-9781856177191.indd 9 1/30/10 2:12:11 PM1/30/10 2:12:11 PM

 1.3.12 LCD Drivers

 LCD drivers enable a microcontroller to be connected to an external LCD display directly. These
drivers are not common because most of the functions they provide can be implemented in the
software. For example, the PIC18F6490 microcontroller has a built-in LCD driver module.

 1.3.13 Analog Comparator

 Analog comparators are used where it is required to compare two analog voltages. Although
these circuits are implemented in most high-end PIC microcontrollers, they are not common
in other microcontrollers. The PIC18F series of microcontrollers have built-in analog compa-
rator modules.

 1.3.14 Real-Time Clock

 Real-time clock (RTC) enables a microcontroller to have absolute date and time information
 continuously. Built-in real-time clocks are not common in most microcontrollers because
they can easily be implemented by either using a dedicated RTC or by writing a program.

 1.3.15 Sleep Mode

 Some microcontrollers (e.g., PIC) offer built-in sleep modes where executing this instruction
puts the microcontroller into a mode where the internal oscillator is stopped and the power
consumption is reduced to an extremely low level. The main reason for using the sleep mode
is to conserve the battery power when the microcontroller is not doing anything useful. The
microcontroller usually wakes up from the sleep mode by external reset or by a watchdog
time-out.

 1.3.16 Power-on Reset

 Some microcontrollers (e.g., PIC) have built-in power-on reset circuits, which keep the micro-
controller in reset state until all the internal circuitry has been initialized. This feature is very
useful as it starts the microcontroller from a known state on power-up. An external reset can
also be provided where the microcontroller can be reset when an external button is pressed.

 1.3.17 Low-Power Operation

 Low-power operation is especially important in portable applications where the microcontroller-
based equipment is operated from batteries. Some microcontrollers (e.g., PIC) can operate
with less than 2 mA at a 5-V supply and approximately 15 µA at a 3-V supply. Some other
microcontrollers, especially microprocessor-based systems where there could be several chips,
may consume several hundred milliamperes or even more.

10 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 1005-Ch01-9781856177191.indd 10 1/30/10 2:12:12 PM1/30/10 2:12:12 PM

 1.3.18 Current Sink/Source Capability

 This is important if the microcontroller is to be connected to an external device that may draw
large current for its operation. PIC microcontrollers can source and sink 25 mA of current
from each output port pin. This current is usually suffi cient to drive light-emitting diodes
(LEDs), small lamps, buzzers, small relays, etc. The current capability can be increased by
connecting external transistor switching circuits or relays to the output port pins.

 1.3.19 USB Interface

 USB is currently a very popular computer interface specifi cation used to connect various
peripheral devices to computers and microcontrollers. Some PIC microcontrollers
provide built-in USB modules. For example, PIC18F2X50 has built-in USB interface
capabilities.

 1.3.20 Motor Control Interface

 Some PIC microcontrollers (e.g., PIC18F2X31) provide motor control interface.

 1.3.21 Controller Area Network Interface

 Controller area network (CAN) bus is a very popular bus system used mainly in automation
applications. Some PIC18F series of microcontrollers (e.g., PIC18F4680) provide CAN inter-
face capabilities.

 1.3.22 Ethernet Interface

 Some PIC microcontrollers (e.g., PIC18F97J60) provide Ethernet interface capabilities. Such
microcontrollers can easily be used in network-based applications.

 1.3.23 ZigBee Interface

 ZigBee is an interface similar to Bluetooth and is used in low-cost wireless home automation
applications. Some PIC18F series of microcontrollers provide ZigBee interface capabilities,
making the design of such wireless systems very easy.

 1.4 Microcontroller Architectures

 Usually two types of architecture are used in microcontrollers (see Figure 1.4): Von Neu-
mann architecture and Harvard architecture . Von Neumann architecture is used by a large
percentage of microcontrollers, where all memory space is on the same bus and instruction
and data use the same bus. In the Harvard architecture (used by the PIC microcontrollers),

Microcontroller Systems 11

www.newnespress.com

05-Ch01-9781856177191.indd 1105-Ch01-9781856177191.indd 11 1/30/10 2:12:12 PM1/30/10 2:12:12 PM

code and data are on separate buses, and this allows the code and data to be fetched simul-
taneously, resulting in an improved performance.

 1.4.1 Reduced Instruction Set Computer and Complex Instruction Set Computer

 Reduced instruction set computer (RISC) and complex instruction set computer (CISC) refer
to the instruction set of a microcontroller. In an 8-bit RISC microcontroller, data is 8 bits
wide but the instruction words are more than 8 bits wide (usually 12, 14, or 16 bits), and the
instructions occupy one word in the program memory. Thus, the instructions are fetched and
executed in one cycle, resulting in an improved performance.

 In a CISC microcontroller, both data and instructions are 8 bits wide. CISC microcontrollers
usually have over 200 instructions. Data and code are on the same bus and cannot be fetched
simultaneously.

 1.5 Choosing a PIC Microcontroller

 Choosing a microcontroller for an application requires taking into account the following
factors:

 Microcontroller speed •

 The number of I/O pins required •

 The peripheral devices required (e.g., USART and A/D converter) •

 The memory size (RAM, fl ash, EEPROM, etc.) •

 Power consumption •

 Physical size •

 Figure 1.4: Von Neumann and Harvard Architectures

(b) Harvard architecture (a) Von Neumann architecture

CPU
Data

memory
Program
memory

Program
memory

CPU

12 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 1205-Ch01-9781856177191.indd 12 1/30/10 2:12:12 PM1/30/10 2:12:12 PM

 1.6 Number Systems

 The effi cient use of a microprocessor or a microcontroller requires a working knowledge of
binary, decimal, and hexadecimal numbering systems. This section provides a background for
those who are unfamiliar with these numbering systems and who do not know how to convert
from one number system to another one.

 Number systems are classifi ed according to their bases. The numbering system used in
everyday life is base 10 or the decimal number system. The most commonly used numbering
system in microprocessor and microcontroller applications is base 16 or hexadecimal. In
 addition, base 2 (binary) or base 8 (octal) number systems are also used.

 1.6.1 Decimal Number System

 As you all know, the numbers in this system are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. We can use the
subscript 10 to indicate that a number is in decimal format. For example, we can show the
decimal number 235 as 235 10 .

 In general, a decimal number is represented as follows:

 a n × 10 n + a n − 1 × 10 n − 1 + a n − 2 × 10 n − 2 + … + a 0 × 10 0

 For example, decimal number 825 10 can be shown as follows:

 825 10 = 8 × 10 2 + 2 × 10 1 + 5 × 10 0

 Similarly, decimal number 26 10 can be shown as follows:

 26 10 = 2 × 10 1 + 6 × 10 0

 or

 3359 10 = 3 × 10 3 + 3 × 10 2 + 5 × 10 1 + 9 × 10 0

 1.6.2 Binary Number System

 In the binary number system, there are two numbers: 0 and 1. We can use the subscript 2 to
indicate that a number is in binary format. For example, we can show binary number 1011
as 1011 2 .

 In general, a binary number is represented as follows:

 a n × 2 n + a n − 1 × 2 n − 1 + a n − 2 × 2 n − 2 + … + a 0 × 2 0

 For example, binary number 1110 2 can be shown as follows:

 1110 2 = 1 × 2 3 + 1 × 2 2 + 1 × 2 1 + 0 × 2 0

Microcontroller Systems 13

www.newnespress.com

05-Ch01-9781856177191.indd 1305-Ch01-9781856177191.indd 13 1/30/10 2:12:12 PM1/30/10 2:12:12 PM

 Similarly, binary number 10001110 2 can be shown as follows:

 10001110 2 = 1 × 2 7 + 0 × 2 6 + 0 × 2 5 + 0 × 2 4 + 1 × 2 3 + 1 × 2 2 + 1 × 2 1 + 0 × 2 0

 1.6.3 Octal Number System

 In the octal number system, the valid numbers are 0, 1, 2, 3, 4, 5, 6, and 7. We can use the
 subscript 8 to indicate that a number is in octal format. For example, we can show octal
number 23 as 23 8 .

 In general, an octal number is represented as follows:

 a n × 8 n + a n − 1 × 8 n − 1 + a n − 2 × 8 n − 2 + … + a 0 × 8 0

 For example, octal number 237 8 can be shown as follows:

 237 8 = 2 × 8 2 + 3 × 8 1 + 7 × 8 0

 Similarly, octal number 1777 8 can be shown as follows:

 1777 8 = 1 × 8 3 + 7 × 8 2 + 7 × 8 1 + 7 × 8 0

 1.6.4 Hexadecimal Number System

 In the hexadecimal number system, the valid numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, D, E, and F. We can use the subscript 16 or H to indicate that a number is
in hexadecimal format. For example, we can show hexadecimal number 1F as 1F 16
or as 1F H .

 In general, a hexadecimal number is represented as follows:

 a n × 16 n + a n − 1 × 16 n − 1 + a n − 2 × 16 n − 2 + … + a 0 × 16 0

 For example, hexadecimal number 2AC 16 can be shown as follows:

 2AC 16 = 2 × 16 2 + 10 × 16 1 + 12 × 16 0

 Similarly, hexadecimal number 3FFE 16 can be shown as follows:

 3FFE 16 = 3 × 16 3 + 15 × 16 2 + 15 × 16 1 + 14 × 16 0

 1.7 Converting Binary Numbers into Decimal

 To convert a binary number into decimal, write the number as the sum of the powers of 2.

14 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 1405-Ch01-9781856177191.indd 14 1/30/10 2:12:12 PM1/30/10 2:12:12 PM

 Example 1. ■ 1

 Convert binary number 1011 2 into decimal.

 Solution

 Write the number as the sum of the powers of 2:

 1011 2 = 1 × 2 3 + 0 × 2 2 + 1 × 2 1 + 1 × 2 0

 = 8 + 0 + 2 + 1

 = 11

 or 1011 2 = 11 10 .

 Example 1. ■ 2

 Convert binary number 11001110 2 into decimal.

 Solution

 Write the number as the sum of the powers of 2:

 11001110 2 = 1 × 2 7 + 1 × 2 6 + 0 × 2 5 + 0 × 2 4 + 1 × 2 3 + 1 × 2 2 + 1 × 2 1 + 0 × 2 0

 = 128 + 64 + 0 + 0 + 8 + 4 + 2 + 0

 = 206

 or 11001110 2 = 206 10 .

 Table 1.1 shows the binary equivalent of decimal numbers from 0 to 31.

 Table 1.1: Binary Equivalent of Decimal Numbers

Decimal Binary Decimal Binary

0 00000000 16 00010000

1 00000001 17 00010001

2 00000010 18 00010010

3 00000011 19 00010011

4 00000100 20 00010100

—cont’d

Microcontroller Systems 15

www.newnespress.com

05-Ch01-9781856177191.indd 1505-Ch01-9781856177191.indd 15 1/30/10 2:12:12 PM1/30/10 2:12:12 PM

 1.8 Converting Decimal Numbers into Binary

 To convert a decimal number into binary, divide the number repeatedly by 2 and take the
remainders. The fi rst remainder is the least signifi cant digit (LSD) and the last remainder is
the most signifi cant digit (MSD).

 ■ Example 1.3

 Convert decimal number 28 10 into binary.

 Solution

 Divide the number by 2 repeatedly and take the remainders:

 28/2 → 14 Remainder 0 (LSD)

 14/2 → 7 Remainder 0

 7/2 → 3 Remainder 1

 3/2 → 1 Remainder 1

 1/2 → 0 Remeinder 1 (MSD)

 The required binary number is 11100 2 .

Decimal Binary Decimal Binary

5 00000101 21 00010101

6 00000110 22 00010110

7 00000111 23 00010111

8 00001000 24 00011000

9 00001001 25 00011001

10 00001010 26 00011010

11 00001011 27 00011011

12 00001100 28 00011100

13 00001101 29 00011101

14 00001110 30 00011110

15 00001111 31 00011111

Table 1.1: Binary Equivalent of Decimal Numbers —cont’d

16 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 1605-Ch01-9781856177191.indd 16 1/30/10 2:12:12 PM1/30/10 2:12:12 PM

 Example 1.4 ■

 Convert decimal number 65 10 into binary.

 Solution

 Divide the number by 2 repeatedly and take the remainders:

 65/2 → 32 Remainder 1 (LSD)

 32/2 → 16 Remainder 0

 16/2 → 8 Remainder 0

 8/2 → 4 Remainder 0

 4/2 → 2 Remainder 0

 2/2 → 1 Remainder 0

 1/2 → 0 Remainder 1 (MSD)

 The required binary nu mber is 1000001 2 .

 Example 1.5 ■

 Convert decimal number 122 10 into binary.

 Solution

 Divide the numb er by 2 repeatedly and take the remainders:

 122/2 → 61 Remainder 0 (LSD)

 61/2 → 30 Remainder 1

 30/2 → 15 Remainder 0

 15/2 → 7 Remainder 1

 7/2 → 3 Remainder 1

 3/2 → 1 Remainder 1

 1/2 → 0 Remainder 1 (MSD)

 The required binary number is 1111010 2 .

Microcontroller Systems 17

www.newnespress.com

05-Ch01-9781856177191.indd 1705-Ch01-9781856177191.indd 17 1/30/10 2:12:12 PM1/30/10 2:12:12 PM

 1.9 Converting Binary Numbers into Hexadecimal

 To convert a binary number into hexadecimal, arrange the number in groups of four and
fi nd the hexadecimal equivalent of each group. If the number cannot be divided exactly into
groups of four, insert zeroes to the left-hand side of the number.

 Example 1.6 ■

 Convert binary number 10011111 2 into hexadecimal.

 Solution

 First, divide the number into groups of four and then fi nd the hexadecimal equivalent
of each group:

 10011111 = 1001 1111

 The required hexadecimal number is 9F 16 .

 Example 1.7 ■

 Convert binary number 1110111100001110 2 into hexadecimal.

 Solution

 First, divide the number into groups of four and then fi nd the equivalent of each group:

 1110111100001110 = 1110 1111 0000 1110

 The required hexadecimal number is EF0E 16.

 Example 1. ■ 8

 Convert binary number 111110 2 into hexadecimal.

 Solution

 Because the number cannot be divided exactly into groups of four, we have to insert
zeroes to the left of the number:

 111110 = 0011 1110

 The required hexadecimal number is 3E 16 .

9 F

E F 0 E

3 E

18 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 1805-Ch01-9781856177191.indd 18 1/30/10 2:12:12 PM1/30/10 2:12:12 PM

 Table 1.2 shows the hexadecimal equivalent of decimal numbers 0 to 31.

 Table 1.2: Hexadecimal Equivalent of Decimal Numbers

Decimal Hexadecimal Decimal Hexadecimal

0 0 16 10

1 1 17 11

2 2 18 12

3 3 19 13

4 4 20 14

5 5 21 15

6 6 22 16

7 7 23 17

8 8 24 18

9 9 25 19

10 A 26 1A

11 B 27 1B

12 C 28 1C

13 D 29 1D

14 E 30 1E

15 F 31 1F

 1.10 Converting Hexadecimal Numbers into Binary

 To convert a hexadecimal number into binary, write the 4-bit binary equivalent of each
 hexadecimal digit.

 Example 1.9 ■

 Convert hexadecimal number A9 16 into binary.

 Solution

 Writing the binary equivalent of each hexadecimal digit

 A = 1010 2 9 = 1001 2

 The required binary number is 10101001 2 .

Microcontroller Systems 19

www.newnespress.com

05-Ch01-9781856177191.indd 1905-Ch01-9781856177191.indd 19 1/30/10 2:12:13 PM1/30/10 2:12:13 PM

 Example ■ 1.10

 Convert hexadecimal number FE3C 16 into binary.

 Solution

 Writing the binary equivalent of each hexadecimal digit

 F = 1111 2 E = 1110 2 3 = 0011 2 C = 1100 2

 The required binary number is 1111111000111100 2 .

 1.11 Converting Hexadecimal Numbers into Decimal

 To convert a hexadecimal number into decimal, we have to calculate the sum of the powers of
16 of the number.

 Example ■ 1.11

 Convert hexadecimal number 2AC 16 into decimal.

 Solution

 Calculating the sum of the powers of 16 of the number:

 2AC 16 = 2 × 16 2 + 10 × 16 1 + 12 × 16 0

 = 512 + 160 + 12

 = 684

 The required decimal number is 684 10 .

 Example 1.12 ■

 Convert hexadecimal number EE 16 into decimal.

 Solution

 Calculating the sum of the powers of 16 of the number

 EE 16 = 14 × 16 1 + 14 × 16 0

 = 224 + 14

 = 238

 The required decimal number is 238 10 .

20 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 2005-Ch01-9781856177191.indd 20 1/30/10 2:12:13 PM1/30/10 2:12:13 PM

 1.12 Converting Decimal Numbers into Hexadecimal

 To convert a decimal number into hexadecimal, divide the number repeatedly by 16 and take
the remainders. The fi rst remainder is the LSD and the last remainder is the MSD.

 Exa ■ mple 1.13

 Convert decimal number 238 10 into hexadecimal.

 Solution

 Dividing the number repeatedly by 16

 238/16 → 14 Remainder 14 (E) (LSD)

 14/16 → 0 Remainder 14 (E) (MSD)

 The required hexadecimal number is EE 16 .

 ■ Example 1.14

 Convert decimal number 684 10 into hexadecimal.

 Solution

 Dividing the number repeatedly by 16

 684/16 → 42 Remainder 12 (C) (LSD)

 42/16 → 2 Remainder 10 (A)

 2/16 → 0 Remainder 2 (MSD)

 The required hexadecimal number is 2AC 16 .

 1.13 Converting Octal Numbers into Decimal

 To convert an octal number into decimal, calculate the sum of the powers of 8 of the
number.

Microcontroller Systems 21

www.newnespress.com

05-Ch01-9781856177191.indd 2105-Ch01-9781856177191.indd 21 1/30/10 2:12:13 PM1/30/10 2:12:13 PM

 Example 1.15 ■

 Convert octal number 15 8 into decimal.

 Solution

 Calculating the sum of the powers of 8 of the number

 15 8 = 1 × 8 1 + 5 × 8 0

 = 8 + 5

 = 13

 The required decimal number is 13 10 .

 Example 1.16 ■

 Convert octal number 237 8 into decimal.

 Solution

 Calculating the sum of the powers of 8 of the number

 237 8 = 2 × 8 2 + 3 × 8 1 + 7 × 8 0

 = 128 + 24 + 7

 = 159

 The required decimal number is 159 10 .

 1.14 Converting Decimal Numbers into Octal

 To convert a decimal number into octal, divide the number repeatedly by 8 and take the
remainders. The fi rst remainder is the LSD and the last remainder is the MSD.

 Example 1. ■ 17

 Convert decimal number 159 10 into octal.

 Solution

 Dividing the number repeatedly by 8

22 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 2205-Ch01-9781856177191.indd 22 1/30/10 2:12:13 PM1/30/10 2:12:13 PM

 159/8 → 19 Remainder 7 (LSD)

 19/8 → 2 Remainder 3

 2/8 → 0 Remainder 2 (MSD)

 The required octal number is 237 8 .

 E ■ xample 1.18

 Convert decimal number 460 10 into octal.

 Solution

 Dividing the number repeatedly by 8

 460/8 → 57 Remainder 4 (LSD)

 57/8 → 7 Remainder 1

 7/8 → 0 Remainder 7 (MSD)

 The required octal number is 714 8 .

 Table 1.3 shows the octal equivalent of decimal numbers 0–31.

 Table 1.3: Octal Equivalent of Decimal Numbers

Decimal Octal Decimal Octal

0 0 16 20

1 1 17 21

2 2 18 22

3 3 19 23

4 4 20 24

5 5 21 25

6 6 22 26

7 7 23 27

8 10 24 30

9 11 25 31

10 12 26 32

11 13 27 33

12 14 28 34

13 15 29 35

14 16 30 36

15 17 31 37

Microcontroller Systems 23

www.newnespress.com

05-Ch01-9781856177191.indd 2305-Ch01-9781856177191.indd 23 1/30/10 2:12:13 PM1/30/10 2:12:13 PM

 1.15 Converting Octal Numbers into Binary

 To convert an octal number into binary, write the 3-bit binary equivalent of each octal digit.

 Example 1.19 ■

 Convert octal number 177 8 into binary.

 Solution

 Write the binary equivalent of each octal digit:

 1 = 001 2 7 = 111 2 7 = 111 2

 The required binary number is 001111111 2 .

 Example 1.20 ■

 Convert octal number 75 8 into binary.

 Solution

 Write the binary equivalent of each octal digit:

 7 = 111 2 5 = 101 2

 The required binary number is 111101 2 .

 1.16 Converting Binary Numbers into Octal

 To convert a binary number into octal, arrange the number in groups of three and write the
octal equivalent of each digit.

 ■ Example 1.21

 Convert binary number 110111001 2 into octal.

 Solution

 Arranging in groups of three

 110111001 = 11
6
0 11

7
1 00

1
1

 The required octal number is 671 8 .

24 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 2405-Ch01-9781856177191.indd 24 1/30/10 2:12:13 PM1/30/10 2:12:13 PM

 1.17 Negative Numbers

 The most signifi cant bit of a binary number is usually used as the sign bit. By convention, for
 positive numbers this bit is 0 and for negative numbers this bit is 1. Table 1.4 shows the 4-bit positive
and negative numbers. The largest positive and negative numbers are +7 and −8, respectively.

 To convert a positive number into negative, take the complement of the number and add 1.
This process is also called the 2’s complement of the number.

 Example 1.22 ■

 Write decimal number −6 as a 4-bit number.

 Solution

 First, write the number as a positive number, then fi nd the complement and add 1:

 0110 + 6

 1001 complement

 1 add 1

 1010 which is − 6

 Table 1.4: Four-Bit Positive and Negative Numbers

Binary Numbers Decimal Equivalent

0111 +7

0110 +6

0101 +5

0100 +4

0011 +3

0010 +2

0001 +1

0000 0

1111 −1

1110 −2

1101 −3

1100 −4

1011 −5

1010 −6

1001 −7

1000 −8

Microcontroller Systems 25

www.newnespress.com

05-Ch01-9781856177191.indd 2505-Ch01-9781856177191.indd 25 1/30/10 2:12:13 PM1/30/10 2:12:13 PM

 ■ Example 1.23

 Write decimal number −25 as an 8-bit number.

 Solution

 First, write the number as a positive number, then fi nd the complement and add 1:

 00011001 + 2 5

 11100110 complement

 1 add 1

 11100111 which is − 2 5

 1.18 Adding Binary Numbers

 The addition of binary numbers is similar to the addition of decimal numbers. Numbers in
each column are added together with a possible carry from a previous column. The primitive
addition operations are as follows:

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 10 generate a carry bit

 1 + 1 + 1 = 11 generate a carry bit

 Some examples are given below.

 Example 1.24 ■

 Find the sum of binary numbers 011 and 110.

 Solution

 We can add these numbers as in the addition of decimal numbers:

 011 First column: 1 + 0 = 1

 + 110 Second column: 1 + 1 = 0 and a carry bit

 Third column: 1 + 1 = 10
 1001

26 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 2605-Ch01-9781856177191.indd 26 1/30/10 2:12:13 PM1/30/10 2:12:13 PM

 ■ Example 1.25

 Find the sum of binary numbers 01000011 and 00100010.

 Solution

 We can add these numbers as in the addition of decimal numbers:

 01000011 First column: 1 + 0 = 1

 + 00100010 Second column: 1 + 1 = 10

 Third column: 0 + carry = 1

 01100101

 Fourth column: 0 + 0 = 0

 Fifth column: 0 + 0 = 0

 Sixth column: 0 + 1 = 1

 Seventh column: 1 + 0 = 1

 Eighth column: 0 + 0 = 0

 1.19 Subtracting Binary Numbers

 To subtract two binary numbers, convert the number to be subtracted into negative and then
add the two numbers.

 ■ Example 1.26

 Subtract binary number 0010 from 0110.

 Solution

 First, let’s convert the number to be subtracted into negative:

 0010 number to be subtracted

 1101 complement

 1 add 1

 1110

Microcontroller Systems 27

www.newnespress.com

05-Ch01-9781856177191.indd 2705-Ch01-9781856177191.indd 27 1/30/10 2:12:13 PM1/30/10 2:12:13 PM

 Now, add the two numbers:

 0110

 + 1110

 0100

 Because we are using 4 bits only, we cannot show the carry bit.

 1.20 Multiplication of Binary Numbers

 Multiplication of two binary numbers is same as the multiplication of decimal numbers. The
four possibilities are as follows:

 0 × 0 = 0

 0 × 1 = 0

 1 × 0 = 0

 1 × 1 = 1

 Some examples are given below.

 ■ Example 1.27

 Multiply the two binary numbers 0110 and 0010.

 Solution

 Multiplying the numbers

 0110

 0010

 0000

 0110

 0000

 0000

 001100 or 1100

 In this example, 4 bits are needed to show the fi nal result.

28 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 2805-Ch01-9781856177191.indd 28 1/30/10 2:12:13 PM1/30/10 2:12:13 PM

 E ■ xample 1.28

 Multiply binary numbers 1001 and 1010.

 Solution

 Multiplying the numbers
 1001

 1010

 0000

 1001

 0000

 1001

 1011010

 In this example, 7 bits are required to show the fi nal result.

 1.21 Division of Binary Numbers

 The division of binary numbers is similar to the division of decimal numbers. An example is
given below.

 ■ Example 1.29

 Divide binary number 1110 by binary number 10.

 Solution

 Dividing the numbers
 111

 10

 ������ 1110

 10
 __
 11

 10
 __
 10

 10
 __
 00

 gives the result 111 2 .

Microcontroller Systems 29

www.newnespress.com

05-Ch01-9781856177191.indd 2905-Ch01-9781856177191.indd 29 1/30/10 2:12:13 PM1/30/10 2:12:13 PM

 1.22 Floating Point Numbers

 Floating point numbers are used to represent noninteger fractional numbers and are used in
most engineering and technical calculations, for example, 3.256, 2.1, and 0.0036. The most
 commonly used fl oating point standard is the IEEE standard. According to this standard, fl oating
point numbers are represented with 32 bits (single precision) or 64 bits (double precision).

 In this section, we will look at the format of 32-bit fl oating point numbers only and see how
mathematical operations can be performed with such numbers.

 According to the IEEE standard, 32-bit fl oating point numbers are represented as follows:

 31 30 23 22 0

 X XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX

 ↑ ↑ ↑
 s i g n e x p o n e n t m a n t i s s a

 The most signifi cant bit indicates sign of the number, where 0 indicates positive and 1
 indicates negative.

 The 8-bit exponent shows the power of the number. To make the calculations easy, the sign of
the exponent is not shown, but instead excess 128 numbering system is used. Thus, to fi nd the
real exponent, we have to subtract 127 from the given exponent. For example, if the mantissa
is “10000000,” the real value of the mantissa is 128 − 127 = 1.

 The mantissa is 23 bits wide and represents the increasing negative powers of 2. For example,
if we assume that the mantissa is “1110000000000000000000,” the value of this mantissa is
calculated as follows: 2 −1 + 2 −2 + 2 −3 = 7/8.

 The decimal equivalent of a fl oating point number can be calculated using the following
formula:

 Number = (− 1) s 2 e − 127 1 ⋅ f,

 where s = 0 for positive numbers, 1 for negative numbers,
 e = exponent (between 0 and 255), and
 f = mantissa.

 As shown in the above formula, there is a hidden “1” before the mantissa; i.e., mantissa is
shown as “1 · f. ”

 The largest and the smallest numbers in 32-bit fl oating point format are as follows:

30 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 3005-Ch01-9781856177191.indd 30 1/30/10 2:12:13 PM1/30/10 2:12:13 PM

 The largest number

 0 11111110 11111111111111111111111

 This number is (2 − 2 −23) 2 127 or decimal 3.403 × 10 38 . The numbers keep their precision up to
six digits after the decimal point.

 The smallest number

 0 00000001 00000000000000000000000

 This number is 2 −126 or decimal 1.175 × 10 −38 .

 1.23 Converting a Floating Point Number into Decimal

 To convert a given fl oating point number into decimal, we have to fi nd the mantissa and the
exponent of the number and then convert into decimal as shown above.

 Some examples are given here.

 ■ Example 1.30

 Find the decimal equivalent of the fl oating point number given below:

 0 10000001 10000000000000000000000

 Solution

 Here,

 sign = positive

 exponent = 129 − 127 = 2

 mantissa = 2 − 1 = 0 .5

 The decimal equivalent of this number is +1.5 × 2 2 = +6.0.

Microcontroller Systems 31

www.newnespress.com

05-Ch01-9781856177191.indd 3105-Ch01-9781856177191.indd 31 1/30/10 2:12:13 PM1/30/10 2:12:13 PM

 E ■ xample 1.31

 Find the decimal equivalent of the fl oating point number given below:

 0 10000010 11000000000000000000

 Solution

 In this example,

 sign = positive

 exponent = 130 − 127 = 3

 mantissa = 2 − 1 + 2 − 2 = 0 .75

 The decimal equivalent of the number is +1.75 × 2 3 = 14.0.

 1.23.1 Normalizing the Floating Point Numbers

 Floating point numbers are usually shown in normalized form. A normalized number has only
one digit before the decimal point (a hidden number 1 is assumed before the decimal point).

 To normalize a given fl oating point number, we have to move the decimal point repetitively
one digit to the left and then increase the exponent after each move.

 Some examples are given below.

 ■ Example 1.32

 Normalize the fl oating point number 123.56.

 Solution

 If we write the number with a single digit before the decimal point, we get

 1 .2356 × 10 2

 ■ Example 1.33

 Normalize the binary number 1011.1 2.

 Solution

 If we write the number with a single digit before the decimal point, we get

 1 .0111 × 2 3

32 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 3205-Ch01-9781856177191.indd 32 1/30/10 2:12:13 PM1/30/10 2:12:13 PM

 1.23.2 Converting a Decimal Number into Floating Point

 To convert a given decimal number into fl oating point, we have to carry out the following steps:

 Write the number in binary •

 Normalize the number •

 Find the mantissa and the exponent •

 Write the number as a fl oating point number •

 Some examples are given below.

 ■ Example 1.34

 Convert decimal number 2.25 10 into fl oating point.

 Solution

 Writing the number in binary

 2 .25 10 = 10 .01 2

 Normalizing the number,

 10 .01 2 = 1 .001 2 × 2 1

 Here, s = 0, e − 127 = 1 or e = 128, and f = 00100000000000000000000.

 (Remember that a number 1 is assumed on the left-hand side, even though it is not shown
in the calculation.) We can now write the required fl oating point number as follows:

 s e f
 0 10000000 (1)001 0000 0000 0000 0000 0000

 or the required 32-bit fl oating point number is

 01000000000100000000000000000000

 ■ Example 1.35

 Convert the decimal number 134.0625 10 into fl oating point.

 Solution

 Writing the number in binary

 134 .0625 10 = 10000110 .0001

Microcontroller Systems 33

www.newnespress.com

05-Ch01-9781856177191.indd 3305-Ch01-9781856177191.indd 33 1/30/10 2:12:14 PM1/30/10 2:12:14 PM

 Normalizing the number

 10000110 .0001 = 1 .00001100001 × 2 7

 Here, s = 0, e − 127 = 7 or e = 134, and f = 00001100001000000000000

 We can now write the required fl oating point number as follows:

 s e f
 0 10000110 (1)00001100001000000000000

 or the required 32-bit fl oating point number is

 01000011000001100001000000000000

 1.23.3 Multiplication and Division of Floating Point Numbers

 The multiplication and division of fl oating point numbers is rather easy and the steps are
given below:

 Add (or subtract) the exponents of the numbers •

 Multiply (or divide) the mantissa of the numbers •

 Correct the exponent •

 Normalize the number •

 The sign of the result is the EXOR of the signs of the two numbers.

 Because the exponent is processed twice in the calculations, we have to subtract 127 from the
exponent.

 An example is given below to show the multiplication of two fl oating point numbers.

 ■ Example 1.36

 Show the decimal numbers 0.5 10 and 0.75 10 in fl oating point and then calculate the
multiplication of these numbers.

 Solution

 We can convert the numbers into fl oating point as follows:

 0 .5 10 = 1 .0000 × 2 − 1

 Here, s = 0, e − 127 = −1 or e = 126 and f = 0000

 or

 0 .5 10 = 0 01110110 (1)000 0000 0000 0000 0000 0000

34 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 3405-Ch01-9781856177191.indd 34 1/30/10 2:12:14 PM1/30/10 2:12:14 PM

 Similarly,

 0 .75 10 = 1 .1000 × 2 − 1

 Here, s = 0, e = 126, and f = 1000

 or

 0 .75 10 = 0 01110110 (1)100 0000 0000 0000 0000 0000

 Multiplying the mantissas, we get “(1)100 0000 0000 0000 0000 0000.” The sum
of the exponents is 126 + 126 = 252. Subtracting 127 from the mantissa, we obtain
252 − 127 = 125. The EXOR of the signs of the numbers is 0. Thus, the result can be
shown in fl oating point as follows:

 0 01111101 (1)100 0000 0000 0000 0000 0000

 The above number is equivalent to decimal 0.375 (0.5 × 0.75 = 0.375), which is the
 correct result.

 1.23.4 Addition and Subtraction of Floating Point Numbers

 The exponents of fl oating point numbers must be the same before they can be added or
 subtracted. The steps to add or subtract fl oating point numbers is as follows:

 Shift the smaller number to the right until the exponents of both numbers are the same. •
Increment the exponent of the smaller number after each shift.

 Add (or subtract) the mantissa of each number as an integer calculation, without •
considering the decimal points.

 Normalize the obtained result. •

 An example is given below.

 Example 1.37 ■

 Show decimal numbers 0.5 10 and 0.75 10 in fl oating point and then calculate the sum of
these numbers.

 Solution

 As shown in Example 1.36, we can convert the numbers into fl oating point as follows:

 0 .5 10 = 0 01110110 (1)000 0000 0000 0000 0000 0000

 Similarly,

 0 .75 10 = 0 01110110 (1)100 0000 0000 0000 0000 0000

Microcontroller Systems 35

www.newnespress.com

05-Ch01-9781856177191.indd 3505-Ch01-9781856177191.indd 35 1/30/10 2:12:14 PM1/30/10 2:12:14 PM

 Because the exponents of both numbers are the same, there is no need to shift the
smaller number. If we add the mantissa of the numbers without considering the
 decimal points, we get

 (1)000 0000 0000 0000 0000 0000

(1)100 0000 0000 0000 0000 0000
_________________________________ +
(10)100 0000 0000 0000 0000 0000

 To normalize the number, we can shift it right by one digit and then increment its
 exponent. The resulting number is

 0 01111111 (1)010 0000 0000 0000 0000 0000

 The above fl oating point number is equal to decimal number 1.25, which is the sum of
decimal numbers 0.5 and 0.75.

 To convert fl oating point numbers into decimal and decimal numbers into fl oating
point, the freely available program given in the following Web site can be used:

 http://www.babbage.cs.qc.edu/IEEE-754/Decimal.html

 1.24 Binary-Coded Decimal Numbers

 Binary-coded decimal (BCD) numbers are usually used in display systems like LCDs and
seven-segment displays to show numeric values. BCD data is stored in either packed or
unpacked forms. Packed BCD data is stored as two digits per byte and unpacked BCD data
is stored as one digit per byte. Unpacked BCD data is usually returned from a keypad or a
keyboard. The packed BCD is more frequently used, and this is the format described in the
remainder of this section.

 In packed BCD, each digit is a 4-bit number from 0 to 9. As an example, Table 1.5 shows the
packed BCD numbers between 0 and 20.

 Table 1.5: Packed BCD Numbers Between 0 and 20

Decimal BCD Binary

0 0000 0000

1 0001 0001

2 0010 0010

3 0011 0011

4 0100 0100

5 0101 0101

36 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 3605-Ch01-9781856177191.indd 36 1/30/10 2:12:14 PM1/30/10 2:12:14 PM

 Example 1.38 ■

 Write the decimal number 295 as a packed BCD number.

 Solution

 Writing the 4-bit binary equivalent of each digit

 2 = 0010 2 9 = 1001 2 5 = 0101 2

 The required packed BCD number is 0010 1001 0101 2.

 Example 1.39 ■

 Write the decimal equivalent of packed BCD number 1001 1001 0110 0001 2 .

 Solution

 Writing the decimal equivalent of each 4-bit group, we get the decimal
 number 9961.

Decimal BCD Binary

6 0110 0110

7 0111 0111

8 1000 1000

9 1001 1001

10 0001 0000 1010

11 0001 0001 1011

12 0001 0010 100

13 0001 0011 1101

14 0001 0100 1110

15 0001 0101 1111

16 0001 0110 1 0000

17 0001 0111 1 0001

18 0001 1000 1 0010

19 0001 1001 1 0011

20 0010 0000 1 0100

Table 1.5: Packed BCD Numbers Between 0 and 20 —cont’d

Microcontroller Systems 37

www.newnespress.com

05-Ch01-9781856177191.indd 3705-Ch01-9781856177191.indd 37 1/30/10 2:12:14 PM1/30/10 2:12:14 PM

 1.25 Summary

 This chapter has given an introduction to the microprocessor and microcontroller systems.
The basic building blocks of microcontrollers have been described briefl y. The chapter has
also provided an introduction to various number systems, and has described how to convert
a given number from one base into another base. The important topics of fl oating point
numbers and fl oating point arithmetic have also been described with examples.

 1.26 Exercises

 What is a microcontroller? What is a microprocessor? Explain the main differences 1.
between a microprocessor and a microcontroller.

 Give some example applications of microcontrollers around you. 2.

 Where would you use an EPROM? 3.

 Where would you use a RAM? 4.

 Explain what types of memory are usually used in microcontrollers. 5.

 What is an I/O port? 6.

 What is an A/D converter? Give an example of use of this converter. 7.

 Explain why a watchdog timer could be useful in a real-time system. 8.

 What is serial I/O? Where would you use serial communication? 9.

 Why is the current sinking/sourcing important in the specifi cation of an output port pin? 10.

 What is an interrupt? Explain what happens when an interrupt is recognized by a 11.
microcontroller.

 Why is brown-out detection important in real-time systems? 12.

 Explain the differences between a RISC-based microcontroller and a CISC-based 13.
microcontroller. What type of microcontroller is PIC?

 Convert the following decimal numbers into binary:14.
 a) 23 b) 128 c) 255 d) 1023
 e) 120 f) 32000 g) 160 h) 250

 Convert the following binary numbers into decimal:15.
 a) 1111 b) 0110 c) 11110000
 d) 00001111 e) 10101010 f) 10000000

38 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 3805-Ch01-9781856177191.indd 38 1/30/10 2:12:14 PM1/30/10 2:12:14 PM

 Convert the following octal numbers into decimal:16.
 a) 177 b) 762 c) 777 d) 123
 e) 1777 f) 655 g) 177777 h) 207

 Convert the following decimal numbers into octal:17.
 a) 255 b) 1024 c) 129 d) 2450
 e) 4096 f) 256 g) 180 h) 4096

 Convert the following hexadecimal numbers into decimal:18.
 a) AA b) EF c) 1FF d) FFFF
 e) 1AA f) FEF g) F0 h) CC

 Convert the following binary numbers into hexadecimal:19.
 a) 0101 b) 11111111 c) 1111 d) 1010
 e) 1110 f) 10011111 g) 1001 h) 1100

 Convert the following binary numbers into octal:20.
 a) 111000 b) 000111 c) 1111111 d) 010111
 e) 110001 f) 11111111 g) 1000001 h) 110000

 Convert the following octal numbers into binary:21.
 a) 177 b) 7777 c) 555 d) 111
 e) 1777777 f) 55571 g) 171 h) 1777

 Convert the following hexadecimal numbers into octal:22.
 a) AA b) FF c) FFFF d) 1AC
 e) CC f) EE g) EEFF h) AB

 23. Convert the following octal numbers into hexadecimal:
 a) 177 b) 777 c) 123 d) 23
 e) 1111 f) 17777777 g) 349 h) 17

 Convert the following decimal numbers into fl oating point:24.
 a) 23.45 b) 1.25 c) 45.86 d) 0.56

 25. Convert the following decimal numbers into fl oating point and then calculate their sum:
 0.255 and 1.75

 Convert the following decimal numbers into fl oating point and then calculate their 26.
 product:
 2.125 and 3.75

 Convert the following decimal numbers into packed BCD:27.
 a) 128 b) 970 c) 900 d) 125

Microcontroller Systems 39

www.newnespress.com

05-Ch01-9781856177191.indd 3905-Ch01-9781856177191.indd 39 1/30/10 2:12:14 PM1/30/10 2:12:14 PM

 Convert the following decimal numbers into unpacked BCD:28.
 a) 128 b) 970 c) 900 d) 125

 29. Convert the following packed BCD numbers into decimal:
 a) 0110 0011 b) 0111 0100 c) 0001 0111

40 Chapter 1

www.newnespress.com

05-Ch01-9781856177191.indd 4005-Ch01-9781856177191.indd 40 1/30/10 2:12:14 PM1/30/10 2:12:14 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /AllegroBT-Regular
 /AntiqueOlive
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Apple-Chancery
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /BabyKruffy
 /BankGothicBT-Medium
 /BenguiatITCbyBT-Bold
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BremenBT-Bold
 /Candid
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CGOmega
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGTimes
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /Chicago
 /Chick
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Condensed-Bold
 /Clarendon-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CooperBlack-Italic
 /CopperplateGothicBT-Bold
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Coronet
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Croobie
 /English111VivaceBT-Regular
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldExtendedTwo
 /Eurostile-ExtendedTwo
 /Fat
 /Fences
 /FencesPlain
 /FranklinGothic-Book
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Freshbot
 /Frosty
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Book
 /Garamond-BookItalic
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Gautami
 /Geneva
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-ExtraBold
 /GoudyHandtooledBT-Regular
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /Humanist521BT-Bold
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Roman
 /Impact
 /Jenkinsv20
 /Jenkinsv20Thik
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Jokewood
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /Kartika
 /Latha
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Italic
 /LetterGothic-Slanted
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaConsole
 /LucidaSansUnicode
 /Mangal-Regular
 /Marigold
 /MathExt
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /MicrosoftSansSerif
 /Minion-Black
 /Minion-Bold
 /Minion-BoldItalic
 /Minion-DisplayItalic
 /Minion-DisplayRegular
 /Minion-Italic
 /Minion-Regular
 /Minion-Semibold
 /Minion-SemiboldItalic
 /Monaco
 /MonaLisa-Recut
 /MonotypeCorsiva
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-BdWeb
 /Myriad-CnItWeb
 /Myriad-CnWeb
 /Myriad-ItWeb
 /Myriad-Web
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewYork
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-Italic
 /Oxford
 /OzHandicraftBT-Roman
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /Poornut
 /Porkys
 /PorkysHeavy
 /PosterBodoniBT-Roman
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RefSpecialty
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Shruti
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Staccato222BT-Regular
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Bold
 /StoneSerif-BoldItalic
 /StoneSerif-Italic
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Swiss911BT-ExtraCompressed
 /Sylfaen
 /Symbol
 /SymbolMT
 /Taffy
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TypoUprightBT-Regular
 /Univers
 /Univers-Black
 /Univers-BlackOblique
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldItalic
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-Condensed-Bold
 /Univers-Condensed-BoldItalic
 /Univers-CondensedBoldOblique
 /Univers-Condensed-Medium
 /Univers-Condensed-MediumItalic
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-Light
 /Univers-LightOblique
 /Univers-Medium
 /Univers-MediumItalic
 /Univers-Oblique
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZurichBT-RomanExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 2400
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 810.000]
>> setpagedevice

