Digital Signal Processing

Everything you need to know to get started

Michael Parker
Altera Corporation
Table of Contents

Introduction .. viii
Acknowledgments ... x

Chapter 1: Numerical Representation 1
1.1 Integer Fixed-Point Representation 2
1.2 Fractional Fixed-Point Representation 4
1.3 Floating-Point Representation 7

Chapter 2: Complex Numbers and Exponentials 9
2.1 Complex Addition and Subtraction 9
2.2 Complex Multiplication 10
2.3 Complex Conjugate .. 15
2.4 The Complex Exponential 16
2.5 Measuring Angles in Radians 18

Chapter 3: Sampling, Aliasing, and Quantization 21
3.1 Nyquist Sampling Rule 25
3.2 Quantization ... 27

Chapter 4: Frequency Response 31
4.1 Frequency Response and the Complex Exponential 31
4.2 Normalizing Frequency Response 33
4.3 Sweeping across the Frequency Response 34
4.4 Example Frequency Responses 35
4.5 Linear Phase Response 37
4.6 Normalized Frequency Response Plots 38

Chapter 5: Finite Impulse Response (FIR) Filters 41
5.1 FIR Filter Construction 41
5.2 Computing Frequency Response 45
5.3 Computing Filter Coefficients 49
5.4 Effect of Number of Taps on Filter Response 52

Chapter 6: Windowing 57
6.1 Truncation of Coefficients 57
6.2 Tapering of Coefficients 58
6.3 Example Coefficient Windows 59
Table of Contents

Chapter 7: Decimation and Interpolation ... 63
7.1 Decimation ... 63
7.2 Interpolation .. 67
7.3 Resampling by Non-Integer Value 70

Chapter 8: Infinite Impulse Response (IIR) Filters 73
8.1 IIR and FIR Filter Characteristic Comparison 74
8.2 Bilinear Transform ... 76
8.3 Frequency Prewarping .. 78

Chapter 9: Complex Modulation and Demodulation 81
9.1 Modulation Constellations .. 81
9.2 Modulated Signal Bandwidth 84
9.3 Pulse-Shaping Filter .. 85
9.4 Raised Cosine Filter .. 88

Chapter 10: Discrete and Fast Fourier Transforms (DFT, FFT) 97
10.1 DFT and IDFT Equations ... 98
10.2 Fast Fourier Transform (FFT) 106
10.3 Filtering Using the FFT and IFFT 110
10.4 Bit Growth in FFTs ... 111
10.5 Bit-Reversal Addressing .. 112

Chapter 11: Digital Upconversion and Downconversion 113
11.1 Digital Upconversion .. 114
11.2 Digital Downconversion .. 117
11.3 IF Subsampling ... 118

Chapter 12: Error Correction Coding ... 125
12.1 Linear Block Encoding ... 126
12.2 Linear Block Decoding ... 127
12.3 Minimum Coding Distance 130
12.4 Convolutional Encoding .. 131
12.5 Viterbi Decoding .. 134
12.6 Soft Decision Decoding ... 140
12.7 Cyclic Redundancy Check 141
12.8 Shannon Capacity and Limit Theorems 142

Chapter 13: Analog and TDMA Wireless Communications 143
13.1 Early Digital Innovations 144
13.2 Frequency Modulation ... 145
13.3 Digital Signal Processor 146
13.4 Digital Voice Phone Systems 147
13.5 TDMA Modulation and Demodulation 148
Table of Contents

Chapter 14: CDMA Wireless Communications

14.1 Spread Spectrum Technology .. 151
14.2 Direct Sequence Spread Spectrum 152
14.3 Walsh Codes .. 153
14.4 Concept of CDMA .. 155
14.5 Walsh Code Demodulation .. 155
14.6 Network Synchronization ... 158
14.7 RAKE Receiver .. 159
14.8 Pilot PN Codes .. 159
14.9 CDMA Transmit Architecture .. 160
14.10 Variable Rate Vocoder ... 162
14.11 Soft Handoff .. 163
14.12 Uplink Modulation ... 163
14.13 Power Control .. 164
14.14 Higher Data Rates .. 166
14.15 Spectral Efficiency Considerations 166
14.16 Other CDMA Technologies ... 167

Chapter 15: OFDMA Wireless Communications

15.1 WiMax and LTE ... 169
15.2 OFDMA Advantages ... 170
15.3 Orthogonality of Periodic Signals .. 171
15.4 Frequency Spectrum of Orthogonal Subcarrier 173
15.5 OFDM Modulation .. 175
15.6 Intersymbol Interference and the Cyclic Prefix 177
15.7 MIMO Equalization ... 180
15.8 OFDMA System Considerations .. 181
15.9 OFDMA Spectral Efficiency ... 182
15.10 OFDMA Doppler Frequency Shift 183
15.11 Peak to Average Ratio ... 183
15.12 Crest Factor Reduction .. 185
15.13 Digital Predistortion .. 188
15.14 Remote Radio Head ... 189

Chapter 16: Radar Basics

16.1 Radar Frequency Bands .. 191
16.2 Radar Antennas ... 192
16.3 Radar Range Equation .. 195
16.4 Stealth Aircraft ... 196
16.5 Pulsed Radar Operation .. 196
16.6 Pulse Compression .. 197
16.7 Pulse Repetition Frequency ... 197
16.8 Detection Processing .. 200
Table of Contents

Chapter 17: Pulse Doppler Radar ... 201
 17.1 Doppler Effect ... 201
 17.2 Pulsed Frequency Spectrum ... 203
 17.3 Doppler Ambiguities .. 205
 17.4 Radar Clutter .. 206
 17.5 PRF Trade-offs ... 208
 17.6 Target Tracking ... 210

Chapter 18: Synthetic Array Radar .. 213
 18.1 SAR Resolution .. 213
 18.2 Pulse Compression .. 214
 18.3 Azimuth Resolution .. 214
 18.4 SAR Processing .. 218
 18.5 SAR Doppler Processing .. 219
 18.6 SAR Impairments ... 221

Chapter 19: Introduction to Video Processing 223
 19.1 Color Spaces .. 223
 19.2 Interlacing .. 225
 19.3 Deinterlacing ... 225
 19.4 Image Resolution and Bandwidth 227
 19.5 Chroma Scaling .. 228
 19.6 Image Scaling and Cropping ... 228
 19.7 Alpha Blending and Compositing 229
 19.8 Video Compression ... 229
 19.9 Video Interfaces ... 230

Chapter 20: Implementation Using Digital Signal Processors 233
 20.1 DSP Processor Architectural Enhancements 233
 20.2 Scalability ... 238
 20.3 Floating Point .. 238
 20.4 Design Methodology ... 239
 20.5 Managing Resources ... 239
 20.6 Ecosystem ... 240

Chapter 21: Implementation Using FPGAs 243
 21.1 FPGA Design Methodology ... 244
 21.2 DSP Processor or FPGA Choice 245
 21.3 Design Methodology Considerations 246
 21.4 Dedicated DSP Circuit Blocks in FPGAs 247
 21.5 Floating Point in FPGAs .. 253
 21.6 Ecosystem .. 254
 21.7 Future Trends .. 255
Appendix A: Q Format Shift with Fractional Multiplication	257
Appendix B: Evaluation of FIR Design Error Minimization	259
Appendix C: Laplace Transform	263
Appendix D: Z-Transform	267
Appendix E: Binary Field Arithmetic	271
Index	273
Introduction

This book is intended for those who work in or provide components for industries that are made possible by digital signal processing, or DSP. Sample industries are wireless mobile phone and infrastructure equipment, broadcast and cable video, DSL modems, satellite communications, medical imaging, audio, radar, sonar, surveillance, electrical motor control—this list goes on. While the engineers who implement these systems must be very familiar with DSP, there are many others—executive and midlevel management, marketing, technical sales and field engineers, business development, and others—who can benefit from a basic knowledge of the fundamental principles of DSP.

Others who are a potential audience include those interested in studying or working in any of these areas. High school seniors or undeclared college majors considering a future in the industries made possible by DSP technology may gain sufficient understanding that enables them to decide whether to continue further.

That, then, is the purpose of this book: to provide a basic tutorial on DSP. This topic seems to have a dearth of easy-to-read and understand explanations. Unlike most technical resources, this is a treatment in which mathematics is minimized and intuitive understanding maximized. This book attempts to explain many difficult concepts like sampling, aliasing, imaginary numbers, and frequency response using easy-to-understand examples. In addition, there is an overview of the DSP functions and implementation used in several DSP-intensive fields or applications, from error correction to CDMA mobile communication to airborne radar systems.

So this book is intended for those of you who, like me, are somewhat dismayed when presented with a blackboard (or whiteboard) full of equations as an explanation on DSP.

The intended readers include those who have absolutely no previous experience with DSP, but are comfortable with high-school-level math skills. Many technical details have been deliberately left out, in order to emphasize just the key concepts. While this book is not expected to be used as a university-course-level text, it can initiate readers prior to tackling a proper text on DSP. But it may also be all you need to talk intelligently to other people involved in a DSP-centric industry and understand many of the fundamental concepts.
To start with, just what is DSP? Well, DSP is performing operations on a digital signal of some sort and using a digital semiconductor device. Most commonly, multipliers and adders are used. If you can multiply and add, you can probably understand DSP. Actually, signal processing was around long before digital electronics. Examples of this are radios and TVs. Early tuners used analog circuits with variable capacitors to dial a station. Resistors, capacitors, and vacuum tubes were used to either attenuate or amplify different frequencies or to provide frequency shifting. These are examples of basic signal processing applications. The signals were analog signals, and the circuits doing the processing were analog, as was the final output.

Today, most signal processing is performed digitally. The reason is that digital circuits have progressively become cheaper and faster, as well as due to the inherent advantages of repeatability, tolerance, and consistency that digital circuits enjoy compared to analog circuits.

If the signal is not in a digital form, then it must first by converted, or digitized. A device called an analog-to-digital converter (ADC) is used. If the output signal needs to be analog, then it is converted back using a digital-to-analog converter (DAC). Of course, many signals are already digitized and can be processed by digital circuits directly.

DSP is at the heart of a wide range of everyday devices in our lives, although many people are unaware of this. A few everyday examples are cellular phones, DSL modems, digital hearing aids, MRI and ultrasound equipment, audio equipment, set top boxes, flat-screen televisions, satellite communications, and DVD players.

As promised, the mathematics will be minimized, but it cannot be eliminated altogether. Some basic trigonometry and the use of complex numbers are unavoidable, so an early chapter is included to introduce these concepts, using as simple examples as possible. There is also one appendix section where very basic calculus is used, but this is not essential to the overall understanding.
Acknowledgments

This book grew out of a need for Altera marketing and technical sales people to have an intuitive-level understanding of DSP fundamentals and applications, in order to better work on issues that our customers face as they implement DSP systems. I am grateful to the Altera management for the support this book has received, in particular from Steve Mensor and Chris Balough.

My understanding of the topics in this book is based on many years of engineering implementation work and collaboration and explanations from many of my colleagues at multiple firms over the years. More recently, within Altera, many people have contributed to my knowledge in these areas. I would like to especially acknowledge a few people who have been helpful both in DSP domain and relevant applications and implementations. Within Altera engineering, this includes Volker Mauer, Martin Langhammer, and Mike Fitton. Within the Altera technical sales organization, people who have been especially helpful to my understanding of some of the relevant DSP applications include Colman Cheung, Ben Esposito, Brian Kurtz, and Mark Santoro.

Within Altera publications, James Adams has been instrumental in getting this project off the ground and working with the publisher.

Finally, the support of my wife, Zaida, and daughter, Ariel, have been most important. This book has been primarily an “evenings and weekends” project, and their patience has been essential.